首页 | 本学科首页   官方微博 | 高级检索  
     

基于法向量距离的路面坑槽提取方法
引用本文:陈鑫龙,马荣贵,梁红涛,廖飞钦. 基于法向量距离的路面坑槽提取方法[J]. 计算机系统应用, 2022, 31(5): 222-229. DOI: 10.15888/j.cnki.csa.008483
作者姓名:陈鑫龙  马荣贵  梁红涛  廖飞钦
作者单位:长安大学 信息工程学院, 西安 710064,陕西交通控股集团有限公司 宝鸡分公司, 宝鸡 721399
基金项目:陕西省交通运输厅交通科研项目(20-24k, 20-25x)
摘    要:以路面高程激光点云为研究对象,提出一种基于法向量距离的路面坑槽提取方法.首先对路面高程点云数据进行数据清洗;其次采用自适应最优邻域的PCA方法估算路面点云数据的法向量,通过计算路面点云中采样点到其局部二次曲面的切平面的法向距离作为法向量距离;以法向量距离描述采样点的三维空间特征,并通过阈值分割自动提取路面坑槽点云集合,...

关 键 词:特征提取  目标检测  坑槽  数据清洗  Mean-Shift  自适应最优邻域  法向量距离  Alpha Shape算法
收稿时间:2021-07-19
修稿时间:2021-08-24

Extraction of Pavement Potholes Based on Normal Vector Distance
CHEN Xin-Long,MA Rong-Gui,LIANG Hong-Tao,LIAO Fei-Qin. Extraction of Pavement Potholes Based on Normal Vector Distance[J]. Computer Systems& Applications, 2022, 31(5): 222-229. DOI: 10.15888/j.cnki.csa.008483
Authors:CHEN Xin-Long  MA Rong-Gui  LIANG Hong-Tao  LIAO Fei-Qin
Abstract:Taking the laser point cloud of pavement elevation as the research object, this study proposes a method for extracting pavement potholes based on normal vector distance. Firstly, the cloud data of pavement elevation points are cleaned. Secondly, the PCA method in the adaptive optimal neighborhood is used to estimate the normal vector of the pavement point cloud data. The normal distance from the sampling point in the pavement point cloud to the tangent plane of its local quadric surface is calculated as the normal vector distance to describe the three-dimensional spatial features of the sampling points. Next, threshold segmentation is employed to automatically extract the pothole point cloud set, which is then segmented by the Mean-Shift clustering algorithm to obtain multiple pothole point sets. Finally, for each pothole point set, the Alpha Shape algorithm is used to extract pothole boundary points that are fitted by cubic spline interpolation three times to obtain the pothole contour. On this basis, the pothole size (length, width, and depth) and area are calculated. Experiments are carried out on regular pothole model point cloud data and real pavement point cloud data. The calculation shows that the average relative errors of pothole depth extracted by this method are 2.7% and 4.7%, respectively, and the average relative errors of pothole area extracted by this method are 6.8% and 4.3%, respectively. The experimental results show that the proposed method can accurately extract the boundary points and size information of pavement potholes and has a strong anti-interference ability for the recognition and extraction of irregular-shaped potholes.
Keywords:feature extraction  target detection  potholes  data cleaning  Mean-Shift  adaptive optimal neighborhood  normal vector distance  Alpha Shape algorithm
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号