首页 | 本学科首页   官方微博 | 高级检索  
     


Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from soot of benzene and o-dichlorobenzene combustion
Authors:Addink R  Altwicker E R
Affiliation:Department of Chemical and Biological Engineering, Ricketts Building, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA.
Abstract:Soots were prepared from flame combustion of benzene and o-dichlorobenzene (ODCB), creating one soot without carbon-chlorine bonds (benzene soot) and one with such bonds (ODCB soot). ODCB soot was tested for PCDD/F formation between 277 and 600 degrees C without additional chlorine, but levels were very low. Copper and Cu2O were added as potential catalysts for ODCB soot oxidation, but levels of PCDD/F observed were even lower than without these additives. Both benzene soot and ODCB soot produced PCDD/F after adding CuCl2 to the reaction mixtures, suggesting that a (volatile) metal chloride was needed in order for PCDD/F formation to take place. Under the various conditions of [Cu2+], time, and temperature tested, ODCB soot was always more reactive than benzene soot in forming PCDD/F. It seemed plausible that, despite the fact that CuCl2 was very effective in creating C-Cl bonds in benzene soot, the C-Cl bonds created in ODCB soot during preparation were of a reactivity so as to make this soot especially prone to PCDD/F formation. High temperature (gas phase) chlorination of soots by HCI or other chlorinating agents, followed by deposition of these soots and condensed metal chlorides on the ducts and walls of the postcombustion zone, could create an effective mechanism for de novo formation of PCDD/F.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号