首页 | 本学科首页   官方微博 | 高级检索  
     

基于迁移学习的软件缺陷预测
引用本文:程铭,毋国庆,袁梦霆. 基于迁移学习的软件缺陷预测[J]. 电子学报, 2016, 44(1): 115-122. DOI: 10.3969/j.issn.0372-2112.2016.01.017
作者姓名:程铭  毋国庆  袁梦霆
作者单位:1. 武汉大学计算机学院, 湖北武汉 430072;2. 武汉大学软件工程国家重点实验室, 湖北武汉 430072
基金项目:国家自然科学基金(91118003;61003071),深圳战略性新兴产业发展专项资金(JCYJ20120616135936123)
摘    要:传统软件缺陷预测方法在解决跨项目缺陷预测过程中适应能力不足,主要是因为源项目和目标项目之间存在不同的特征分布.为了解决这个问题,提出一种新的加权贝叶斯迁移学习算法,算法首先收集训练数据和测试数据的特征信息,然后计算特征差异,将不同项目数据之间差异转化为训练数据权重,最后基于这些权重数据建立预测模型.在8个开源项目数据集上进行实验比较,实验结果表明与其他方法相比本文方法显著提高跨项目缺陷预测性能.

关 键 词:软件缺陷预测  迁移学习  机器学习  朴素贝叶斯  
收稿时间:2014-06-06

Transfer Learning for Software Defect Prediction
CHENG Ming,WU Guo-qing,YUAN Meng-ting. Transfer Learning for Software Defect Prediction[J]. Acta Electronica Sinica, 2016, 44(1): 115-122. DOI: 10.3969/j.issn.0372-2112.2016.01.017
Authors:CHENG Ming  WU Guo-qing  YUAN Meng-ting
Affiliation:1. School of Computer, Wuhan University, Wuhan, Hubei 430072, China;2. State Key Lab of Software Engineering, Wuhan University, Wuhan, Hubei 430072, China
Abstract:The traditional software defect prediction methods have weak adaptive ability for cross-project defect prediction, largely because of feature distribution differences between the source and target projects.In order to resolve this problem, we propose a novel weighted naive Bayes transfer learning algorithm.Firstly, the feature information of the test data and training data are collected;next, our solution computes feature differences, and transfers cross-project data differences into the weights of the training data;finally, on these weighted data, the defect prediction model is built.Our experiments are conducted on eight open-source projects, and experimental results demonstrate that our method significantly improves cross-project defect prediction performance, compared to other methods.
Keywords:software defect prediction  transfer learning  machine learning  naive Bayes
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号