首页 | 本学科首页   官方微博 | 高级检索  
     


Accurate Exploration of the Intrinsic Lattice Thermal Conductivity of Si2N2O by Combined Theoretical and Experimental Investigations
Authors:Peng Wan  Zhilin Tian  Yixiu Luo  Bin Liu  Jingyang Wang
Affiliation:1. High‐performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China;2. University of Chinese Academy of Sciences, Beijing, China
Abstract:Si2N2O is a promising ceramic with various structural and functional applications. Precisely exploring its thermal conductivity is crucially important to evaluate its thermal transport reliability as high‐temperature structural component and electronic device. In this paper, temperature‐dependent lattice thermal conductivity of Si2N2O is studied based on a method integrating density functional theory calculations and experimental measurements. The relationship between the complex crystal structure (or heterogeneous chemical bonding) and lattice thermal conductivity of Si2N2O is studied. We herein show that Si2N2O intrinsically has moderately high lattice thermal conductivity 30.9 W·(m·K)?1 at 373 K], but extrinsic phonon scattering mechanisms, such as phonon scattering by point defects and grain boundaries etc., might significantly degrade the magnitude in experimental measurement 15.0 W·(m·K)?1 at 373 K]. This work suggests the significance that understanding the intrinsic thermal conductivity, namely the upper limit value, is a precursor to deciphering the more complicated heat transport behavior of Si2N2O.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号