首页 | 本学科首页   官方微博 | 高级检索  
     


High‐Temperature Isothermal Oxidation of Ultra‐High Temperature Ceramics Using Thermal Gravimetric Analysis
Authors:Melia Miller‐Oana  Erica L. Corral
Affiliation:Materials Science and Engineering Department, Arizona Materials Laboratory, The University of Arizona, Tucson, Arizona
Abstract:Oxidation of ZrB2 + SiC composites is investigated using isothermal measurements to study the effects of temperature, time, and gas flow on oxidation behavior and microstructural evolution. A test method called dynamic nonequilibrium thermal gravimetric analysis (DNE‐TGA), which eliminates oxidation during the heating ramp, has been developed to monitor mass change from the onset of an isothermal hold period (15 min) as a function temperature (1000°C–1600°C) and gas flow (50 and 200 mL/min). In comparing isothermal to nonisothermal TGA measurements, the scale thicknesses from isothermal tests are up to 4 times greater, indicating that oxidation kinetics are faster for isothermal testing, where the oxide scale thickness is 110 μm after 15 min at 1600°C in air. Isothermal oxidation followed parabolic kinetics with a mass gain that is temperature dependent from 1000°C–1600°C. The mass gain increased from ~5 to 45 g/m2 and parabolic rate constants increased from 0.037 to 2.2 g2/m4·s over this temperature range. The effect of flow velocity on oxidation is not significant under the given laminar flow environment where the gas boundary layer is calculated to be 4 mm. These values are consistent with diffusion of oxygen through the glass‐ceramic surface layer as rate limiting.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号