首页 | 本学科首页   官方微博 | 高级检索  
     


Topological derivatives for fundamental frequencies of elastic bodies
Authors:Vladimir Kobelev
Affiliation:Department of Mechanical Engineering, University of Siegen, Siegen, Germany
Abstract:In this article a new method for topological optimization of fundamental frequencies of elastic bodies, which could be considered as an improvement on the bubble method, is introduced. The method is based on generalized topological derivatives. For a body with different types of inclusion the vector genus is introduced. The dimension of the genus is the number of different elastic properties of the inclusions being introduced. The disturbances of stress and strain fields in an elastic matrix due to a newly inserted elastic inhomogeneity are given explicitly in terms of the stresses and strains in the initial body. The iterative positioning of inclusions is carried out by determination of the preferable position of the new inhomogeneity at the extreme points of the characteristic function. The characteristic function was derived using Eshelby's method. The expressions for optimal ratios of the semi-axes of the ellipse and angular orientation of newly inserted infinitesimally small inclusions of elliptical form are derived in closed analytical form.
Keywords:bubble method  Eshelby effective inclusion  topological derivative  vector topological genus  fundamental frequencies
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号