首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of heat flux and inlet temperature on the fouling characteristics of nanoparticles
Authors:Jingtao Wang  Zhiming Xu  Zhimin Han  Yu Zhao
Affiliation:College of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
Abstract:In order to study the effect of heat flux and inlet temperature on the fouling characteristics of nanoparticles, and to further reveal the fouling mechanism for insights into proper operating conditions, γ-Al2O3/water suspensions were chosen as the subject of this research. The particulate fouling characteristics of γ-Al2O3/water suspensions on the surface of stainless steel have been experimentally studied by varying the heat flux and the inlet temperature under single-phase flow and subcooled-flow boiling conditions. The results show that in the condition of single-phase flow, the asymptotic value of fouling resistance decreases with increasing of heat flux and inlet temperature. The asymptotic value of fouling resistance under single-phase flow is much higher than for the subcooled-flow boiling condition. The effect of heat flux on the fouling resistance under the two flow states has an inverse relationship, and there exists a minimum value of fouling resistance between these two states. For subcooled-flow boiling, the asymptotic value of fouling resistance increases with increasing heat flux, whereas the effect on fouling resistance by the inlet temperature is negligible.
Keywords:Inlet temperature  Heat flux  Particulate fouling characteristics  Single-phase flow  Subcooled-flow boiling
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号