首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of different polarimetric target decomposition methods in forest density classification using C band SAR data
Authors:Alappat Ouseph Varghese  Arun Suryavanshi  Asokh Kumar Joshi
Affiliation:1. Regional Remote Sensing Centre-Central, National Remote Sensing Centre, Nagpur, Maharashtra, Indiavargheseao@rediffmail.com;3. Regional Remote Sensing Centre-Central, National Remote Sensing Centre, Nagpur, Maharashtra, India
Abstract:The ability of synthetic aperture radar (SAR) C-band microwave energy to penetrate within forest vegetation makes it possible to extract information on crown components, which in turn gives a better approximation of relative canopy density than optical data-derived canopy density. Many studies have been reported to estimate forest biomass from SAR data, but the scope of C-band SAR in characterizing forest canopy density has not been adequately understood with polarimetric techniques. Polarimetric classification is one of the most significant applications of polarimetric SAR in remote sensing. The objective of the present study was to evaluate the feasibility of different polarimetric SAR data decomposition methods in forest canopy density classification using C-band SAR data. Landsat (Land Satellite) 5 TM (Thematic Mapper) data of the same area has been used as optical data to compare the classification result. RADARSAT (Radar Satellite)-2 image with fine quad-pol obtained on 27 October 2011 over tropical dry forests of Madhav National Park, India, was used for the analysis of full polarimetric data. Six decomposition methods were selected based on incoherent decomposition for generating input images for classification, i.e. Huynen, Freeman and Durden, Yamaguchi, Cloude, Van zyl, and H/A/α. The performance of each decomposition output in relation to each land cover unit present in the study area was assessed using a support vector machine (SVM) classifier. Results show that Yamaguchi 4-component decomposition (overall accuracy 87.66% and kappa coefficient (κ) 0.86) gives better classification results, followed by Van Zyl decomposition (overall accuracy 87.20% and κ 0.85) and Freeman and Durden (overall accuracy 86.79% and κ 0.85) in forest canopy density classification. Both model-based decompositions (Freeman and Durden and Yamaguchi4) registered good classification accuracy. In eigenvector or eigenvalue decompositions, Van zyl registered the second highest accuracy among different decompositions. The experimental results obtained with polarimetric C-band SAR data over a tropical dry deciduous forest area imply that SAR data have significant potential for estimating canopy density in operational forestry. A better forest density classification result can be achieved within the forest mask (without other land cover classes). The limitations associated with optical data such as non-availability of cloud-free data and misclassification because of gregarious occurrence of bushy vegetation such as Lantana can be overcome by using C-band SAR data.
Keywords:SAR processing  polarimetric decompositions  forestry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号