首页 | 本学科首页   官方微博 | 高级检索  
     


Assessing corn water stress using spectral reflectance
Authors:Kendall C DeJonge  Brenna S Mefford  José L Chávez
Affiliation:1. Water Management Systems Research Unit, USDA Agricultural Research Service, Fort Collins, CO, USAKendall.DeJonge@ars.usda.gov;3. Wyoming State Engineer’s Office, Cheyenne, WY, USA;4. Civil and Environmental Engineering Department, Colorado State University, Fort Collins, CO, USA;5. Civil and Environmental Engineering Department, Colorado State University, Fort Collins, CO, USA
Abstract:Multiple remote-sensing techniques have been developed to identify crop-water stress; however, some methods may be difficult for farmers to apply. If spectral reflectance data can be used to monitor crop-water stress, growers could use this information as a quick low-cost guideline for irrigation management, thus helping save water by preventing over-irrigating and achieving desired crop yields. Data was collected in the 2013 growing season near Greeley, Colorado, where drip irrigation was used to irrigate 12 corn (Zea mays L.) treatments with varying water-deficit levels. Ground-based multispectral data were collected and three different vegetation indices were evaluated. These included the normalized difference vegetation index (NDVI), the optimized soil-adjusted vegetation index (OSAVI), and the Green normalized difference vegetation index (GNDVI). The three vegetation indices were compared to water stress as indicated by the stress coefficient (Ks), and water deficit in the root zone was calculated using a soil water balance. To compare the indices to Ks, vegetation ratios were developed from vegetation indices in the process of normalization. Vegetation ratios are defined as the non-stressed vegetation index divided by the stressed vegetation index. Results showed that vegetation ratios were sensitive to water stress as indicated by the good coefficient of determination (R2 > 0.46) values and low root mean square error (RMSE < 0.076) values when compared to Ks. To use spectral reflectance to manage crop-water stress, an example irrigation trigger point of 0.93 for the vegetation ratios was determined for a 10–12% loss in yield. These results were validated using data collected from a different field. The performance of the vegetation ratio approach was better than when applied to the main field giving higher goodness of fit values (R2 > 0.63), and lower error values (RMSE < 0.043) between Ks and the vegetation indices.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号