首页 | 本学科首页   官方微博 | 高级检索  
     

基于BERT-BiLSTM-CRF的法律案件实体智能识别方法
引用本文:郭知鑫,邓小龙. 基于BERT-BiLSTM-CRF的法律案件实体智能识别方法[J]. 北京邮电大学学报, 2021, 44(4): 129-134. DOI: 10.13190/j.jbupt.2020-241
作者姓名:郭知鑫  邓小龙
作者单位:北京邮电大学 网络空间安全学院, 北京 100876
基金项目:国家重点研发项目子课题(2017YFC0820603)
摘    要:在智能法务系统应用中,人工智能自然语言处理相关技术常采用静态特征向量模型,算法效率低,精度偏差较大.为了对法律文本中的案件实体进行智能识别,提高案件的处理效率,针对动态字向量模型提出以基于转换器的双向编码表征模型作为输入层的识别方法.在其基础上通过融合双向长短期记忆网络和条件随机场模型,构建了高精度的法律案件实体智能识别方法,并通过实验验证了模型的性能.

关 键 词:自然语言处理  智能法务  基于转换器的双向编码表征模型  
收稿时间:2020-11-30

Intelligent Identification Method of Legal Case Entity Based on BERT-BiLSTM-CRF
GUO Zhi-xin,DENG Xiao-long. Intelligent Identification Method of Legal Case Entity Based on BERT-BiLSTM-CRF[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 129-134. DOI: 10.13190/j.jbupt.2020-241
Authors:GUO Zhi-xin  DENG Xiao-long
Affiliation:School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract:In the past, artificial intelligence natural language processing related technologies often used static feature vector models in the application of intelligent legal systems, which had problems such as low algorithm efficiency and large accuracy deviations. To intelligently identify case entities in legal texts and improve case processing efficiency, the dynamic word vector model is studied, and a recognition method based on the bidirectional encoder representations from transformers model as the input layer is proposed. Based on the fusion of bi-directional long short-term memory and conditional random fields models, a high-precision method of intelligent identification of legal case entities is constructed. The performance of the model is verifiedthrough experiments.
Keywords:natural language processing  intelligent legal affairs  bidirectional encoder representations from transformers model  
本文献已被 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号