首页 | 本学科首页   官方微博 | 高级检索  
     


Study of spray cooling of a pressure vessel head of a boiling water reactor
Authors:Henryk Anglart  Farid Alavyoon
Affiliation:a Royal Institute of Technology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
b Forsmarks Kraftgrupp AB, SE-742 03 Östhammar, Sweden
Abstract:The present paper deals with a theoretical analysis of the spray cooling of a Reactor Pressure Vessel (RPV) head in a Boiling Water Reactor (BWR). To this end a detailed computational model has been developed. The model predicts the trajectories, diameters and temperatures of subcooled droplets moving in saturated vapor. The model has been validated through comparison with experimental data, in which droplet temperatures were measured as functions of the distance that they cover in saturated vapor from the moment they leave the sprinkler outlet to the moment they impact on the RPV head inner wall. The calculations are in very good agreement with measurements, confirming the model adequacy for the present study. The model has been used for a parametric study to investigate the influence of several parameters on the cooling efficiency of the spray system. Based on the study it has been shown that one of the main parameters that govern the temperature increase in a subcooled droplet is its initial diameter. Comparisons are also made between conclusions from the theoretical model and observations made through flow and temperature measurements in the plant (Forsmark 1 and 2). One of these observations is that the rate at which the RPV head temperature decreases on the way down from hot to cold standby is constant and independent of the sprinkling flow rate as long as the flow rate is above a certain minimum value. Accordingly, the theoretical model shows that if one assumes that the cooling of the RPV head is through a water film built on the inner wall due to sprinkling, the heat removal rate is only very weakly dependent on the sprinkling flow rate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号