Constant current stress-induced leakage current in mixed HfO2-Ta2O5 stacks |
| |
Authors: | E. Atanassova N. Novkovski D. Spassov |
| |
Affiliation: | a Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784, Bulgaria b Institute of Physics, Faculty of Natural Science and Mathematics, Gazibaba b.b., 1000 Skopje, Macedonia |
| |
Abstract: | The electrical characteristics of HfO2-Ta2O5 mixed stacks under constant current stress (CCS) at gate injection with 20 mA/cm2 and stressing times of 50 and 200 s have been investigated. A very weak effect of the stress on the global dielectric constant, on fast and slow states in the stack as well as on the dominant conduction mechanism is detected. The most sensitive parameter to the CCS is the leakage current. The stress-induced leakage current (SILC) is voltage and thickness dependent. The pre-existing traps govern the trapping kinetics and are a key parameter to evaluate the stress response. Two processes - positive charge build-up and new bulk traps generation - are suggested to be responsible for SILC: the domination of one of them depends on both the film thickness and the stressing time. The positive charge build-up is localized close to the gate electrode implying gate-induced defects could be precursors for it. It is established that unlike the case of single SiO2 layer, the bulk traps closer to the gate electrode control SILC in the mixed Ta2O5-HfO2-based capacitors. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|