首页 | 本学科首页   官方微博 | 高级检索  
     


Contribution of thin-film evaporation during flow boiling inside microchannels
Authors:A Mukherjee
Affiliation:1. National Institute of Technology Uttarakhand, Srinagar 246174, Uttarakhand, India;2. Indian Institute of Technology Patna, Bihta, 801103, Bihar, India
Abstract:Flow boiling through microchannels is characterized by nucleation and growth of vapor bubbles that fill the entire channel cross-sectional area. As the bubbles nucleate and grow inside the microchannel, a thin film of liquid or a microlayer gets trapped between the bubbles and the channel walls. The heat transfer mechanism present at the channel walls during flow boiling is studied numerically. It is then compared to the heat transfer mechanisms present during nucleate pool boiling and in a moving evaporating meniscus. Increasing contact angle improved wall heat transfer in case of nucleate boiling and moving evaporating meniscus but not in the case of flow boiling inside a microchannel. It is shown that the thermal and the flow fields present inside the microchannel around a bubble are fundamentally different as compared to nucleate pool boiling or in a moving evaporating meniscus. It is explained why thin-film evaporation is the dominant heat transfer mechanism and is responsible for creating an apparent nucleate boiling effect inside a microchannel.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号