首页 | 本学科首页   官方微博 | 高级检索  
     

表情和姿态的双模态情感识别
引用本文:闫静杰,郑文明,辛明海,邱伟. 表情和姿态的双模态情感识别[J]. 中国图象图形学报, 2013, 18(9): 1101-1106
作者姓名:闫静杰  郑文明  辛明海  邱伟
作者单位:1. 东南大学信息科学与工程学院,南京,210096
2. 东南大学学习科学研究中心,南京,210096
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:多模态情感识别是当前情感计算研究领域的重要内容,针对人脸表情和动作姿态开展双模态情感识别研究,提出一种基于双边稀疏偏最小二乘的表情和姿态的双模态情感识别方法.首先,从视频图像系列中分别提取表情和姿态两种模态的空时特征作为情感特征矢量.然后,通过双边稀疏偏最小二乘(BSPLS)的数据降维方法来进一步提取两组模态中的情感特征,并组合成新的情感特征向量.最后,采用了两种分类器来进行情感的分类识别.以国际上广泛采用的FABO表情和姿态的双模态情感数据库为实验数据,并与多种子空间方法(主成分分析、典型相关分析、偏最小二乘回归)进行对比实验来评估本文方法的识别性能.实验结果表明,两种模态融合后相比单模态更加有效,双边稀疏偏最小二乘(BSPLS)算法在几种方法中得到最高的情感识别率.

关 键 词:表情  姿态  双模态情感识别  空时特征  双边稀疏偏最小二乘(BSPLS)
收稿时间:2012-12-18
修稿时间:2013-02-27

Bimodal emotion recognition based on body gesture and facial expression
Yan Jingjie,Zheng Wenming,Xin Minghai and Qiu Wei. Bimodal emotion recognition based on body gesture and facial expression[J]. Journal of Image and Graphics, 2013, 18(9): 1101-1106
Authors:Yan Jingjie  Zheng Wenming  Xin Minghai  Qiu Wei
Affiliation:School of Information Science and Engineering, Southeast University, Nanjing 210096, China;Research Center for Learning Science, Southeast University, Nanjing 210096, China;Research Center for Learning Science, Southeast University, Nanjing 210096, China;Research Center for Learning Science, Southeast University, Nanjing 210096, China
Abstract:Multimodal emotion recognition has been a very important research topic in affect computing. This paper mainly focuses on the methods of bimodal emotion recognition based on body gesture and facial expression and presents a novel bimodal emotion recognition method based on bilateral sparse partial least squares (BSPLS) method. Firstly, the Spatio-Temporal feature is extracted as the emotion feature vector for video-based body gesture and facial expression respectively. Then we propose a novel bilateral sparse partial least squares (BSPLS) method to extract emotion feature and fuse facial expression and body gesture as new emotion feature. At last, we utilize two classifiers in emotional classification. We compared the BSPLS method with some subspace methods including PCA, LDA, and PLSR based on the data from the FABO database. The experimental results show that the fusion feature methods are all better than the monomodal emotion recognition and our BSPLS feature fusion provides the best recognition performance.
Keywords:Bimodal Emotion Recognition   Spatio-Temporal Feature   Bilateral Sparse Partial Least Squares (BSPLS)
本文献已被 万方数据 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号