首页 | 本学科首页   官方微博 | 高级检索  
     

融合全局最好和声搜索算法的模糊C均值聚类图像分割
引用本文:崔兆华,高立群,欧阳海滨,李文娜. 融合全局最好和声搜索算法的模糊C均值聚类图像分割[J]. 中国图象图形学报, 2013, 18(9): 1133-1141
作者姓名:崔兆华  高立群  欧阳海滨  李文娜
作者单位:1. 东北大学信息科学与工程学院,沈阳110819;解放军第65041部队,沈阳110113
2. 东北大学信息科学与工程学院,沈阳,110819
基金项目:国家自然科学基金项目(51005042)
摘    要:针对传统模糊C均值(FCM)聚类算法聚类数目难以确定,迭代速度慢,易陷入局部最优以及对聚类中心初始值的设置敏感等问题,提出一种融合全局最好和声搜索模糊C均值(GBHS-FCM)聚类算法。首先,利用全局最好和声搜索(GBHS)算法的全局性和鲁棒性的优点,得到初始聚类中心和聚类个数,再将其作为传统FCM聚类算法的初始聚类中心和聚类个数;其次,提出一种新颖的模糊聚类目标函数,将图像像素点邻域依赖特性考虑进来,与像素点灰度信息共同作用,增强了分割结果空间的连续性;此外,还采用了一种新颖的距离公式代替欧氏距离公式,增强了新算法对噪声的鲁棒性。仿真结果表明,新算法有效避免了传统FCM算法因初始聚类中心设置敏感而收敛到局部最优解,在聚类精度、速度和鲁棒性上均比传统FCM算法有所提高,针对具有不同特征的图像分割取得了较好的结果。

关 键 词:图像分割  模糊C均值聚类  全局最好和声搜索算法  聚类精度
收稿时间:2012-12-10
修稿时间:2013-07-02

Improved fuzzy C-means clustering combined with the global best harmony search algorithm for image segmentation
Cui Zhaohu,Gao Liqun,Ouyang Haibin and Li Wenna. Improved fuzzy C-means clustering combined with the global best harmony search algorithm for image segmentation[J]. Journal of Image and Graphics, 2013, 18(9): 1133-1141
Authors:Cui Zhaohu  Gao Liqun  Ouyang Haibin  Li Wenna
Affiliation:College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;65041 PLA troops, Shenyang 110113, China;College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract:To overcome the shortcomings of the traditional FCM algorithm, such as the difficulty to determine cluster numbers slow iteration, and the tendency to plunge into local optimization,as well as sensitivity to, the initial values,an improved fuzzy c-means clustering combining with the global best harmony search algorithm(GBHS-FCM) is proposed. First, the initial cluster numbers and cluster centers of the FCM algorithm are obtained by the GBHS algorithm, while taking the advantages of global superiority and robustness of the GBHS algorithm. Then a new fuzzy clustering function is presented by combining the pixel intensity information and the spatial dependence to the neighboring pixels together, which enhances the spatial continuity of the segmentation results. Finally, a new distance formula is proposed to replace the traditional Euclidean distance formula, which enhances the robustness of the new algorithm to noise. The simulation results show that the GBHS-FCM algorithm performs better than FCM algorithm in accuracy, speed and robustness.
Keywords:Image segmentation   Fuzzy c-means (FCM) clustering   Global best harmony search algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号