首页 | 本学科首页   官方微博 | 高级检索  
     

水电机组状态参数趋势分析与在线识别
引用本文:王善永,钟敦美,张启明. 水电机组状态参数趋势分析与在线识别[J]. 电力系统自动化, 2001, 25(14): 29-32
作者姓名:王善永  钟敦美  张启明
作者单位:国家电力公司电力自动化研究院,
摘    要:机组状态参数的趋势分析及计算机表达是影响在线故障诊断的重要因素 ,文中运用奇异谱理论对状态参数的趋势进行了分析,运用人工神经网络完成对机组状态参数典型趋势的在线识别,该方法可以对机组状态参数(如振动,温度,压力等)进行有效的识别,为水轮机组的状态分析,状态评估和预测提供有效的辅助分析手段,从而为水电厂状态维修提供了参考。

关 键 词:水轮发电机组 状态参数 在线识别 人工神经网络
收稿时间:1900-01-01
修稿时间:1900-01-01

TREND ANALYSIS AND ON-LINE IDENTIFICATION OF STATE PARAMETERS OF HYDRAULIC GENERATORS
Wang Shanyong,Zhong Dunmei,Zhang Qiming. TREND ANALYSIS AND ON-LINE IDENTIFICATION OF STATE PARAMETERS OF HYDRAULIC GENERATORS[J]. Automation of Electric Power Systems, 2001, 25(14): 29-32
Authors:Wang Shanyong  Zhong Dunmei  Zhang Qiming
Abstract:Trend analysis and computerized expression of state parameters are two important factors in the on-line fault diagnosis.Singular spectrum theory is used in this paper to analyze the trend of state parameters.While the artificial neural network(ANN)is applied in the on-line identification of typical trends of state parameters.This method can identify the state parameters effectively,such as vibration,temperature,pressure and so on.So it could be an effective assistant analytical method for state analysis,state assessment and prediction of hydraulic generators as well as could be a powerful reference of state maintenance for hydroelectric plant.
Keywords:hydroelectric plant  state maintenance  singular spectrum theory  artificial neural network  trend analysis  on-line identification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号