首页 | 本学科首页   官方微博 | 高级检索  
     


Entanglement generation due to the Klein tunneling in a graphene sheet
Authors:E Ghanbari-Adivi  M Soltani  M Sheikhali
Affiliation:1.Department of Physics, Faculty of Sciences,University of Isfahan,Isfahan,Iran
Abstract:Scattering of a ballistic electron by the quantum-dot spin qubits fixed in a graphene nanoribbon is investigated theoretically. Two simple cases are investigated in details: scattering from a static quantum dot and scattering from two static quantum dots located at a fixed distance from each other. For the first case, it is shown that the Klein tunneling in a graphene sheet leads to a final entangled state for the reflected and/or transmitted electrons. The amount of the generated entanglement through the scattering process is a function of the incident angle for the ballistic electrons. For the second case, it is shown that the created correlation between the quantum dots is a periodic function of their distance. For frontal incident electrons in both cases, there is not any reflection and the Klein tunneling effect leads to a final well-correlated state for the scattering system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号