首页 | 本学科首页   官方微博 | 高级检索  
     


Converting heterogeneous statistical tables on the web to searchable databases
Authors:David W. Embley  Mukkai S. Krishnamoorthy  George Nagy  Sharad Seth
Affiliation:1.Computer Science Department,Brigham Young University,Provo,USA;2.Rensselaer Polytechnic Institute,Troy,USA;3.University of Nebraska Lincoln,Lincoln,USA
Abstract:Much of the world’s quantitative data reside in scattered web tables. For a meaningful role in Big Data analytics, the facts reported in these tables must be brought into a uniform framework. Based on a formalization of header-indexed tables, we proffer an algorithmic solution to end-to-end table processing for a large class of human-readable tables. The proposed algorithms transform header-indexed tables to a category table format that maps easily to a variety of industry-standard data stores for query processing. The algorithms segment table regions based on the unique indexing of the data region by header paths, classify table cells, and factor header category structures of two-dimensional as well as the less common multidimensional tables. Experimental evaluations substantiate the algorithmic approach to processing heterogeneous tables. As demonstrable results, the algorithms generate queryable relational database tables and semantic-web triple stores. Application of our algorithms to 400 web tables randomly selected from diverse sources shows that the algorithmic solution automates end-to-end table processing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号