首页 | 本学科首页   官方微博 | 高级检索  
     


Graphillion: software library for very large sets of labeled graphs
Authors:Takeru Inoue  Hiroaki Iwashita  Jun Kawahara  Shin-ichi Minato
Affiliation:1.ERATO Minato Discrete Structure Manipulation System Project,Japan Science and Technology Agency,Hokkaido,Japan;2.Graduate School of Information Science,Nara Institute of Science and Technology,Nara,Japan;3.Graduate School of Information Science and Technology,Hokkaido University,Hokkaido,Japan
Abstract:Several graph libraries have been developed in the past few decades, and they were basically designed to work with a few graphs. However, there are many problems in which we have to consider all subgraphs satisfying certain constraints on a given graph. Since the number of subgraphs can increase exponentially with the graph size, explicitly representing these sets is infeasible. Hence, libraries concerned with efficiently representing a single graph instance are not suitable for such problems. In this paper, we develop Graphillion, a software library for very large sets of (vertex-)labeled graphs, based on zero-suppressed binary decision diagrams. Graphillion is not based on a traditional representation of graphs. Instead, a graph set is simply regarded as a “set of edge sets” ignoring vertices, which allows us to employ powerful tools of a “family of sets” (a set of sets) and permits large graph sets to be handled efficiently. We also utilize advanced graph enumeration algorithms, which enable the simple family tools to understand the graph structure. Graphillion is implemented as a Python library to encourage easy development of its applications, without introducing significant performance overheads. In experiments, we consider two case studies, a puzzle solver and a power network optimizer, in which several operations and heavy optimization have to be performed over very large sets of constrained graphs (i.e., cycles or forests with complicated conditions). The results show that Graphillion allows us to manage a huge number of graphs with very low development effort.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号