首页 | 本学科首页   官方微博 | 高级检索  
     


A Compiler-Directed Approach to Network Latency Reduction for Distributed Shared Memory Multiprocessors
Authors:Sibabrata Ray  Hong Jiang  Qing Yang
Affiliation:aDepartment of Computer and Information Sciences, University of Michigan–Dearborn, Dearborn, Michigan, 48128;bDepartment of Computer Science and Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska, 68588;cDepartment of Electrical and Computer Engineering, University of Rhode Island, Kingston, Rhode Island, 02881
Abstract:In distributed shared memory multiprocessor systems, parallel tasks communicate through sharing memory data. As the system size increases, such communication cost becomes the main factor that limits the overall parallelism and performance. In this paper, we propose a new solution to the problem through judiciously managing the relevant resource, namely, the shared data and the interconnection network (IN) through which the sharing is carried out. In this approach, communication cost is minimized by means of data migration/allocation which is based on analyzing general layered task graphs, sharing behavior of parallel tasks, and network topology. Our method is not applicable for read only variables. Further, for the time being, the usefulness of the method is limited to multiprocessors where no cache coherence mechanism is implemented. Four typical interconnection topologies for multiprocessors are considered, namely, shared-bus, hierarchical-bus, 2-D mesh, and fat-tree structures. Efficient data allocation algorithms for each of the four network topologies are developed that make decision on data allocation/migration at the compile time. The complexity of one algorithm isO(np) for shared-bus andO(n2p) for the remaining three in a system withnprocessors executing ap-layer task graph for one shared variable. We have also given an algorithm to determine optimal allocation/migration scheme for multiple shared variables. However, the cost of the algorithm become prohibitive when the number of shared variables is high. Therefore, a heuristic of low complexity is suggested. The heuristic is optimal for some topologies.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号