首页 | 本学科首页   官方微博 | 高级检索  
     

模态切换水下机器人微惯性导航分析
引用本文:张明,刘慧婷,眭翔,宋振文,刘海舰,曾庆军. 模态切换水下机器人微惯性导航分析[J]. 计算机辅助工程, 2015, 24(3): 88-94
作者姓名:张明  刘慧婷  眭翔  宋振文  刘海舰  曾庆军
作者单位:江苏科技大学电子信息学院,江苏镇江,212003
摘    要:针对某模态切换远程遥控水下机器人(Model-Converted Remotely Operated Vehicle,MC-ROV),基于微机电系统(Micro-Electro-Mechanical Systems,MEMS)器件设计微惯性组合导航系统.该系统包括陀螺仪、加速度计、磁罗盘、深度传感器和微处理器等.采用互补滤波方法抑制陀螺漂移,基于四元数算法对陀螺仪积分,并以四元数为估计对象设计无损卡尔曼滤波算法,从而提高导航精度.分析梯度下降法原理,并研究其在四元数更新中的补偿作用.水池试验表明:互补滤波与无损卡尔曼滤波相结合的方法能够获得比较精确、稳定的MC-ROV导航信息.基于实测数据的算法仿真表明梯度下降法可以在一定程度上改善导航效果.

关 键 词:水下机器人  微惯性导航  互补滤波  无损卡尔曼滤波  四元数  梯度下降法
收稿时间:2015-04-04
修稿时间:2015-04-04

Analysis on micro-inertial navigation of model-converted remotely operated vehicle
ZHANG Ming,LIU Huiting,SUI Xiang,SONG Zhenwen,LIU Haijian and ZENG Qingjun. Analysis on micro-inertial navigation of model-converted remotely operated vehicle[J]. Computer Aided Engineering, 2015, 24(3): 88-94
Authors:ZHANG Ming  LIU Huiting  SUI Xiang  SONG Zhenwen  LIU Haijian  ZENG Qingjun
Affiliation:School of Electronic and Information, Jiangsu University of Science and Technology;School of Electronic and Information, Jiangsu University of Science and Technology;School of Electronic and Information, Jiangsu University of Science and Technology;School of Electronic and Information, Jiangsu University of Science and Technology;School of Electronic and Information, Jiangsu University of Science and Technology;School of Electronic and Information, Jiangsu University of Science and Technology
Abstract:In terms of the MC-ROV underwater vehicle, a set of MEMS-inertial integrated navigation system has been developed, including gyroscope, accelerometer, magnetic compass, depth sensor and a micro-controller. Utilizing complementary filter method to restrain the drifting of gyroscope, while the quaternions were introduced into integration algorithm. And selecting the quaternions as estimating objects, an Unscented Kalman Filter (UKF) algorithm was competed, resulting in an enhancement of navigation accuracy. Moreover, a detail analysis was done for the gradient descent method in this paper, researching its function in the updating of quaternion. The pool experimental results present the method that combines complementary filter with Kalman filter gains stable and high-precision effects. Meanwhile, algorithm simulations based on measured data demonstrate that the gradient descent method can improve the navigation effects in a certain degree.
Keywords:underwater vehicle   MEMS navigation system   UKF   gradient descent method
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机辅助工程》浏览原始摘要信息
点击此处可从《计算机辅助工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号