首页 | 本学科首页   官方微博 | 高级检索  
     

基于李雅普诺夫优化的容器云队列在线任务和资源调度设计
引用本文:李磊,薛洋,吕念玲,冯敏. 基于李雅普诺夫优化的容器云队列在线任务和资源调度设计[J]. 计算机应用, 2019, 39(2): 494-500. DOI: 10.11772/j.issn.1001-9081.2018061243
作者姓名:李磊  薛洋  吕念玲  冯敏
作者单位:华南理工大学电子与信息学院,广州,510641;世纪龙信息网络有限责任公司,广州,510630
基金项目:国家自然科学基金资助项目(61472144);广东省科技计划项目(2017A010101027,2015B010131004)。
摘    要:为在保证任务服务质量(QoS)的条件下提高容器云资源利用率,提出一种基于李雅普诺夫的容器云队列任务和资源调度优化策略。首先,在云计算服务排队模型的基础上,通过李雅普诺夫函数分析任务队列长度的变化;然后,在任务QoS的约束下,构建资源功耗的最小化目标函数;最后,利用李雅普诺夫优化方法求解最小资源功耗目标函数,获得在线的任务和容器资源的优化调度策略,实现对任务和资源调度进行整体优化,从而保证任务的QoS并提高资源利用率。CloudSim仿真结果表明,所提的任务和资源调度策略在保证任务QoS的条件下能获得高的资源利用率,实现容器云在线任务和资源优化调度,并且为基于排队模型的云计算任务和资源整体优化提供必要的参考。

关 键 词:云计算  资源调度  建模与分析  服务质量保证  功耗优化  李雅普诺夫优化
收稿时间:2018-06-14
修稿时间:2018-09-07

Online task and resource scheduling designing for container cloud queue based on Lyapunov optimization method
LI Lei,XUE Yang,LYU Nianling,FENG Min. Online task and resource scheduling designing for container cloud queue based on Lyapunov optimization method[J]. Journal of Computer Applications, 2019, 39(2): 494-500. DOI: 10.11772/j.issn.1001-9081.2018061243
Authors:LI Lei  XUE Yang  LYU Nianling  FENG Min
Affiliation:1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou Guangdong 510641, China;2. 21 CN Limited Liability Company, Guangzhou Guangdong 510630, China
Abstract:To improve the resource utilization with Quality of Service (QoS) guarantee, a task and resource scheduling method under Lyapunov optimization for container cloud queue was proposed. Firstly, based on the queueing model of cloud computing, the Lyapunov function was used to analyze the variety of the task queue length. Secondly, the minimum energy consumption objective function was constructed under the task QoS guarantee. Finally, Lyapunov optimization method was used to solve the minimum cost objective function to obtain an optimization scheduling policy for the online tasks and container resources, improving the resource utilization and guaranteeing the QoS. The CloudSim simulation results show that, the proposed task and resource scheduling policy achieves high resource utilization under the QoS guarantee, which realizes the online task and resource optimization scheduling of container cloud and provides necessary reference for cloud computing task and resource overall optimization based on queuing model.
Keywords:cloud computing  resource scheduling  modeling and analysis  Quality of Service (QoS) guarantee  energy consumption optimization  Lyapunov optimization  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号