首页 | 本学科首页   官方微博 | 高级检索  
     

基于边缘计算的分支神经网络模型推断延迟优化
引用本文:樊琦,李卓,陈昕. 基于边缘计算的分支神经网络模型推断延迟优化[J]. 计算机应用, 2020, 40(2): 342-346. DOI: 10.11772/j.issn.1001-9081.2019081406
作者姓名:樊琦  李卓  陈昕
作者单位:网络文化与数字传播北京市重点实验室(北京信息科技大学),北京 100101
北京信息科技大学 计算机学院,北京 100101
基金项目:国家自然科学基金资助项目(61502040);北京市属高校高水平教师队伍建设支持计划青年拔尖人才培育计划资助项目(CIT&TCD201804055);北京信息科技大学“勤信人才”培养计划资助项目;网络文化与数字传播北京市重点实验室开放课题资助项目(ICDDXN001)
摘    要:针对云服务器上深度神经网络(DNN)模型推断任务延迟过高的问题,提出基于边缘计算的分支神经网络部署模型。分析了边缘计算场景中深度神经网络的分布式部署问题,证明该问题是NP-难的。设计了一种基于分支定界思想的部署算法(DBB),选择合适的边缘计算节点部署模型以减少推断任务的延迟。设计并实现了选择节点退出(SNE)算法,为不同任务选择合适的边缘计算节点来退出推断任务。仿真实验结果表明,与在云端部署神经网络模型的方法相比,基于边缘计算的分支神经网络模型的推断延迟平均降低了36%。

关 键 词:边缘计算  分支神经网络  深度神经网络  推断延迟  部署问题  
收稿时间:2019-07-31
修稿时间:2019-09-05

Inference delay optimization of branchy neural network model based on edge computing
Qi FAN,Zhuo LI,Xin CHEN. Inference delay optimization of branchy neural network model based on edge computing[J]. Journal of Computer Applications, 2020, 40(2): 342-346. DOI: 10.11772/j.issn.1001-9081.2019081406
Authors:Qi FAN  Zhuo LI  Xin CHEN
Affiliation:Beijing Key Laboratory of Internet Culture and Digital Dissemination Research (Beijing Information Science & Technology University),Beijing 100101,China
School of Computer Science,Beijing Information Science & Technology University,Beijing 100101,China
Abstract:Aiming at the long delay of inference tasks in Deep Neural Network (DNN) on cloud servers, a branchy neural network deployment model based on edge computing was proposed. The distributed deployment problem of DNNs in edge computing scenarios was analyzed, and was proved to be NP-hard. A Deployment algorithm based on Branch and Bound (DBB) was designed to select appropriate edge computing nodes to reduce inference delay. And a Selection Node Exit (SNE) algorithm was designed and implemented to select the appropriate edge computing nodes for different tasks to exit the inference task. The simulation results show that, compared with the approach of deploying neural network model on the cloud, the branchy neural network model based on edge computing reduces the inference delay by 36% on average.
Keywords:edge computing   branchy neural network   Deep Neural Network (DNN)   inference delay   deployment problem
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号