首页 | 本学科首页   官方微博 | 高级检索  
     

基于LiCl溶液太阳能界面蒸发的连续式空气取水
引用本文:安美燕,王洁冰,徐震原,王如竹. 基于LiCl溶液太阳能界面蒸发的连续式空气取水[J]. 化工学报, 2021, 72(Z1): 70-76. DOI: 10.11949/0438-1157.20201548
作者姓名:安美燕  王洁冰  徐震原  王如竹
作者单位:上海交通大学制冷与低温工程研究所,上海 200240
基金项目:国家自然科学基金项目(51976123)
摘    要:太阳能吸收式空气取水利用广泛存在的太阳能和空气获取淡水,是解决淡水短缺的有效方法,然而传统技术的水分吸收和解吸收集需要分开运行,效率较低且需要人工操作。为解决该问题,提出基于吸湿盐溶液太阳能界面蒸发的连续式空气取水,一方面采用LiCl溶液吸收空气中的水分,另一方面利用太阳能界面蒸发实现溶液解吸与水蒸气冷凝收集,由于太阳能界面蒸发可以实现局部加热与解吸,吸收和解吸两个过程可以同时进行。进一步对LiCl溶液的太阳能界面蒸发与连续空气取水分别进行了试验研究,试验结果显示:质量分数为30%的LiCl溶液可以进行高效的吸收/解吸工作,在一个太阳光照强度下达到0.44 kg/(m2·h)的蒸发速率和39.3%的能量效率,并能实现连续太阳能空气取水,取水速率达到2 L/(m2·d)。

关 键 词:空气取水  吸收  界面  解吸  连续  
收稿时间:2020-11-02

Continuous atmospheric water harvester based on solar interfacial evaporation of LiCl solution
AN Meiyan,WANG Jiebing,XU Zhenyuan,WANG Ruzhu. Continuous atmospheric water harvester based on solar interfacial evaporation of LiCl solution[J]. Journal of Chemical Industry and Engineering(China), 2021, 72(Z1): 70-76. DOI: 10.11949/0438-1157.20201548
Authors:AN Meiyan  WANG Jiebing  XU Zhenyuan  WANG Ruzhu
Affiliation:Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:Atmospheric water harvester based solar sorption technology uses widespread solar energy and air to obtain fresh water, which is an effective method to solve the shortage of fresh water. However, the traditional technology of water absorption and desorption sets need to be operated separately, which is inefficient and requires manual operation. To solve this problem, this paper proposes continuous atmospheric water harvester based on solar interfacial evaporation of hygroscopic salt solution. On the one hand, LiCl solution is used to absorb moisture in the air. On the other hand, solar interfacial evaporation is used to achieve solution desorption and water vapor condensation collection. Interfacial evaporation can achieve local heating and desorption, and the two processes of absorption and desorption can be performed simultaneously. In this paper, the solar interfacial evaporation of LiCl solution and continuous atmospheric water harvester were separately studied. The experimental results show that LiCl solution with a mass fraction of 30% can perform efficient absorption/desorption work, and can achieve an evaporation rate of 0.44 kg/(m2·h) and an efficiency of 39.3% under one solar light intensity. The device can achieve continuous solar atmospheric water harvest, and the water intake rate reaches 2 L/(m2·d).
Keywords:atmospheric water harvester  absorption  interface  desorption  continuous  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号