首页 | 本学科首页   官方微博 | 高级检索  
     

基于稠密卷积神经网络的烟雾识别方法
引用本文:程广涛,巩家昌,李建. 基于稠密卷积神经网络的烟雾识别方法[J]. 计算机应用, 2020, 40(5): 1465-1469. DOI: 10.11772/j.issn.1001-9081.2019091583
作者姓名:程广涛  巩家昌  李建
作者单位:1.国家消防工程技术研究中心 研发部,天津 3003812.中国刑事警察学院 声像资料检测技术系,沈阳 110854
基金项目:应急管理部天津消防研究所基金资助项目(2018SJ20)。
摘    要:针对传统烟雾检测方法中提取的图像特征鲁棒性较差的问题,提出了基于稠密卷积神经网络(DenseNet)的烟雾识别方法。首先,利用卷积操作和特征图融合构建稠密网络块,在卷积层之间设计稠密连接机制,以增强稠密网络块结构内的信息流通和特征重利用;然后,将已构建的稠密网络块叠加成稠密卷积神经网络用于烟雾识别,节省计算资源的同时提升对烟雾图像特征的表达能力;最后,针对烟雾图像数据量较小的问题,采取数据增强技术进一步改善训练模型的识别能力。在公开烟雾数据集上对提出的方法进行实验验证,实验结果表明,所提方法的模型大小只有0.44 MB,在两个测试集上的准确率分别为96.20%和96.81%。

关 键 词:烟雾识别  稠密连接  卷积神经网络  深度学习  数据增强
收稿时间:2019-09-17
修稿时间:2019-10-25

Smoke recognition method based on dense convolutional neural network
CHENG Guangtao,GONG Jiachang,LI Jian. Smoke recognition method based on dense convolutional neural network[J]. Journal of Computer Applications, 2020, 40(5): 1465-1469. DOI: 10.11772/j.issn.1001-9081.2019091583
Authors:CHENG Guangtao  GONG Jiachang  LI Jian
Affiliation:1.Department of Research and Development, National Center for Fire Engineering Technology, Tianjin 300381, China
2.Department of Audio-Visual Information Detection Technology, Criminal Investigation Police University of China,ShenyangLiaoning 110854, China
Abstract:To address the poor robustness of the extracted image features in traditional smoke detection methods, a smoke recognition method based on Dense convolution neural Network (DenseNet) was proposed. Firstly, the dense network blocks were constructed by applying convolution operation and feature map fusion, and the dense connection mechanism was designed between the convolution layers, so as to promote the information circulation and feature reuse in the dense network block structure. Secondly, the DenseNet was designed by stacking the designed dense network blocks for smoke recognition, saving the computing resources and enhancing the expression ability of smoke image features. Finally, aiming at the problem of small smoke image data size, data augmentation technology was adopted to further improve the recognition ability of the training model. Experiments were carried out on public smoke datasets. The experimental results illustrate that the proposed method achieves high accuracy of 96.20% and 96.81% on two test sets respectively with only 0.44 MB model size.
Keywords:smoke recognition   dense connection   Convolutional Neural Network (CNN)   deep learning   data augmentation
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号