首页 | 本学科首页   官方微博 | 高级检索  
     

往复荷载作用下配置摩擦型阻尼器钢木混合剪力墙抗侧力性能研究
引用本文:李征,陈飞,董翰林,何敏娟,李明浩.往复荷载作用下配置摩擦型阻尼器钢木混合剪力墙抗侧力性能研究[J].建筑结构学报,2020,41(10):1-10.
作者姓名:李征  陈飞  董翰林  何敏娟  李明浩
作者单位:1. 同济大学 土木工程学院, 上海 200092; 2. 同济大学 工程结构性能演化与控制教育部重点实验室, 上海 200092; 3. 坎特伯雷大学 土木与自然资源系, 克莱斯特彻奇 8140
基金项目:国家自然科学基金项目(51878476,51608376)。
摘    要:为研究配置摩擦型阻尼器钢木混合剪力墙的抗侧力性能,首先以4个摩擦型阻尼器研究了阻尼器的静力和动力特性,摩擦型阻尼器由高强螺栓穿过内、外钢板组成,钢板间夹有摩擦材料,包括无石棉有机材料NAO-780和聚四氟乙烯PTFE两种,内钢板设有长圆孔。当阻尼器激发,内、外钢板开始相对滑动耗能,当高强螺栓抵住长圆孔端部,则阻尼器锁定。阻尼器试验结果表明:阻尼器激发力与高强螺栓扭矩成线性正相关。摩擦材料NAO 780在不同加载幅值和频率下摩擦性能稳定。进而,将所研发的摩擦型阻尼器引入钢木混合剪力墙中,通过往复加载试验研究了钢木混合剪力墙的抗侧力性能。试验结果表明:阻尼器激发力越大,试件初始刚度越高,但木剪力墙损伤更严重;阻尼器内钢板长圆孔长度越长,木剪力墙可得到更多保护,但阻尼器锁定推迟,钢框架侧向变形增大。合理设置阻尼器激发力和阻尼器内钢板长圆孔长度可减小钢木混合剪力墙在地震作用下的损伤,使其在大侧移下仍有充足的抗侧能力储备,提高其抗震性能。

关 键 词:钢木混合结构    钢框架    木剪力墙    摩擦型阻尼器    往复加载试验    抗侧力性能  

Lateral performance of timber-steel hybrid shear wall with friction dampers under cyclic loading
LI Zheng,CHEN Fei,DONG Hanlin,HE Minjuan,LI Minghao.Lateral performance of timber-steel hybrid shear wall with friction dampers under cyclic loading[J].Journal of Building Structures,2020,41(10):1-10.
Authors:LI Zheng  CHEN Fei  DONG Hanlin  HE Minjuan  LI Minghao
Affiliation:1. College of Civil Engineering, Tongji University, Shanghai 200092, China;; 2. Key Laboratory of Performance Evolution and Control for Engineering Structures of the  Ministry of Education, Tongji University, Shanghai 200092, China;; 3. Department of Civil & Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand;
Abstract:This paper presents the experimental and analytical analyses on the lateral performance of timber-steel hybrid shear wall with friction dampers. The mechanical properties of friction dampers were investigated with a series of static and dynamic tests. The friction damper consists of inner and outer steel plates, friction material, and high-strength bolt. The friction material, namely, Non Asbestos Organic materials (NAO-780) or Polytetrafluoroethylene (PTFE), is sandwiched between the inner and outer steel plates and is clamped by the high strength bolt, and a slotted hole is arranged in the inner steel plate. The damper is activated to dissipate energy when the steel plates begin to slide. The dampers can be locked at the onset of the contact between the high strength bolt and the end of the slotted hole. Damper test results show that the activation force of the damper is in proportion to the amount of torque applied on the high-strength bolt. The friction performance of NAO-780 is stable under different loading amplitudes and frequencies. So the damper is further incorporated into the timber-steel hybrid shear wall. The lateral resisting mechanism of the hybrid shear wall system was then investigated through cyclic loading tests. Test results show that when damper activation force is large, the damper will not activate under small lateral load and will act as a shear connection between the steel frame and the wood shear wall, so a higher lateral stiffness can be available. When the length of the slotted hole is long, there will be a larger relative lateral deformation between the steel frame and the wood shear wall, so the wood shear wall is in protection until the lock of the damper, then the wood shear wall can deform laterally and protect the structure against collapse under extremely large earthquakes. A reasonable set of the two factors (i.e., damper activation force and length of the slotted hole) can reduce the damage of the hybrid system under earthquakes,so the system has sufficient lateral resistance even under the large lateral deformation. The earthquake resilience of the system can be improved.
Keywords:timber-steel hybrid structure  steel frame  wood shear wall  friction damper  cyclic loading test  lateral performance  
本文献已被 万方数据 等数据库收录!
点击此处可从《建筑结构学报》浏览原始摘要信息
点击此处可从《建筑结构学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号