首页 | 本学科首页   官方微博 | 高级检索  
     

基于需求预测的PaaS平台资源分配方法
引用本文:徐雅斌,彭宏恩. 基于需求预测的PaaS平台资源分配方法[J]. 计算机应用, 2019, 39(6): 1583-1588. DOI: 10.11772/j.issn.1001-9081.2018122613
作者姓名:徐雅斌  彭宏恩
作者单位:北京信息科技大学计算机学院,北京100101;网络文化与数字传播北京市重点实验室(北京信息科技大学),北京100101;北京信息科技大学计算机学院,北京,100101
基金项目:网络文化与数字传播北京市重点实验室项目(ICDDXN004);信息网络安全公安部重点实验室开放课题资助项目(C18601)。
摘    要:针对缺乏PaaS平台下资源需求的有效预测与优化分配的问题,提出一种资源需求预测模型和分配方法。首先,根据PaaS平台中应用对资源需求的周期性来对资源序列进行切分,并在短期预测的基础上结合应用的多周期性特征,利用多元回归算法建立综合的预测模型。然后,基于MapReduce架构设计实现了一个Master-Slave模式的PaaS平台资源分配系统。最后,结合当前任务请求和资源需求预测结果进行资源分配。实验结果表明,采用该资源需求预测模型和分配方法后,相比于自回归模型和指数平滑算法,平均绝对百分比误差分别下降8.71个百分点和2.07个百分点,均方根误差分别下降2.01个百分点和0.46个百分点。所提预测模型的预测结果不仅误差小,与真实值的拟合程度也较高,而且利用较小的时间开销就可以获得较高的准确度。此外,使用该预测模型的PaaS平台的资源请求的平均等待时间有了明显的下降。

关 键 词:云计算  平台即服务  需求预测  资源分配  多元回归
收稿时间:2018-12-12
修稿时间:2019-03-26

PaaS platform resource allocation method based on demand forecasting
XU Yabin,PENG Hong'en. PaaS platform resource allocation method based on demand forecasting[J]. Journal of Computer Applications, 2019, 39(6): 1583-1588. DOI: 10.11772/j.issn.1001-9081.2018122613
Authors:XU Yabin  PENG Hong'en
Affiliation:1. College of Computer Science, Beijing Information Science & Technology University, Beijing 100101, China;2. Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(Beijing Information Science & Technology University), Beijing 100101, China
Abstract:In view of the lack of effective resource demand forecasting and optimal allocation in Platform-as-a-Service (PaaS) platform, a resource demand forecasting model and an allocation method were proposed. Firstly, according to the periodicity of the application demand for resources in PaaS platform, the resource sequence was segmented. And on the basis of short-term prediction, combined with the multi-periodicity characteristics of the application, a comprehensive prediction model was established by using the multiple regression algorithm. Then, based on MapReduce architecture, a PaaS platform resource allocation system based on Master-Slave mode was designed and implemented. Finally, the resources were allocated based on current task request and resource demand prediction results. The experimental results show that, compared with autoregressive model and exponential smoothing algorithm, the proposed resource demand forecasting model and allocation method has the mean absolute percentage error drop of 8.71 percentage points and 2.07 percentage points respectively, root mean square error drop of 2.01 percentage points and 0.46 percentage points respectively. It can be seen that the prediction result of the prediction model has little error and its fitting degree with real value is high, while high accuracy costs little time. Besides, the average waiting time of PaaS platform with the proposed prediction model for resource requests decreases significantly.
Keywords:cloud computing   Platform-as-a-Service (PaaS)   demand forecasting   resource allocation   multiple regression
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号