首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进卷积神经网络的单幅图像超分辨率重建方法
引用本文:刘月峰,杨涵晰,蔡爽,张晨荣. 基于改进卷积神经网络的单幅图像超分辨率重建方法[J]. 计算机应用, 2019, 39(5): 1440-1447. DOI: 10.11772/j.issn.1001-9081.2018091887
作者姓名:刘月峰  杨涵晰  蔡爽  张晨荣
作者单位:内蒙古科技大学信息工程学院,内蒙古包头,014000;内蒙古科技大学信息工程学院,内蒙古包头,014000;内蒙古科技大学信息工程学院,内蒙古包头,014000;内蒙古科技大学信息工程学院,内蒙古包头,014000
基金项目:内蒙古自然科学基金资助项目(2018MS06019)。
摘    要:对于重建图像存在的边缘失真和纹理细节信息模糊的问题,提出一种基于改进卷积神经网络(CNN)的图像超分辨率重建方法。首先在底层特征提取层以三种插值方法和五种锐化方法进行多种预处理操作,并将只进行一次插值操作的图像和先进行一次插值后进行一次锐化的图像合并排列成三维矩阵;然后在非线性映射层将预处理后构成的三维特征映射作为深层残差网络的多通道输入,以获取更深层次的纹理细节信息;最后在重建层为减少图像重建时间在网络结构中引入亚像素卷积来完成图像重建操作。在多个常用数据集上的实验结果表明,与经典方法相比,所提方法重建图像的纹理细节信息和高频信息能得到更好的恢复,峰值信噪比(PSNR)平均增加0.23 dB,结构相似性(SSIM)平均增加0.006 6。在保证图像重建时间的前提下,所提方法更好地保持重建图像的纹理细节并减少图像边缘失真,提升重建图像的性能。

关 键 词:单幅图像超分辨率重建  深度学习  卷积神经网络  多通道卷积  亚像素卷积
收稿时间:2018-09-10
修稿时间:2018-11-19

Single image super-resolution reconstruction method based on improved convolutional neural network
LIU Yuefeng,YANG Hanxi,CAI Shuang,ZHANG Chenrong. Single image super-resolution reconstruction method based on improved convolutional neural network[J]. Journal of Computer Applications, 2019, 39(5): 1440-1447. DOI: 10.11772/j.issn.1001-9081.2018091887
Authors:LIU Yuefeng  YANG Hanxi  CAI Shuang  ZHANG Chenrong
Affiliation:School of Information Engineering, Inner Mongolia University of Science & Technology, Baotou Inner Mongolia 014000, China
Abstract:Aiming at the problem of edge distortion and fuzzy texture detail information in reconstructed images, an image super-resolution reconstruction method based on improved Convolutional Neural Network (CNN) was proposed. Firstly, various preprocessing operations were performed on the underlying feature extraction layer by three interpolation methods and five sharpening methods, and the images which were only subjected to one interpolation operation and the images which were sharpened after interpolation operation were arranged into a 3D matrix. Then, the 3D feature map formed by the preprocessing was used as the multi-channel input of a deep residual network in the nonlinear mapping layer to obtain deeper texture detail information. Finally, for reducing image reconstruction time, sub-pixel convolution was introduced into the reconstruction layer to complete image reconstruction operation. Experimental results on several common datasets show that the proposed method achieves better restored texture detail information and high-frequency information in the reconstructed image compared with the classical methods. Furthermore, the Peak Signal-to-Noise Ratio (PSNR) was increased by 0.23 dB on average, and the structural similarity was increased by 0.0066 on average. The proposed method can better maintain the texture details of the reconstructed image and reduce the image edge distortion under the premise of ensuring the image reconstruction time, improving the performance of image reconstruction.
Keywords:single image super-resolution reconstruction  deep learning  Convolutional Neural Network (CNN)  multi-channel convolution  sub-pixel convolution  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号