首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced electrochemical performance of garnet-based solid-state lithium metal battery with modified anodic and cathodic interfaces
Authors:Deen Yan  Huangwang Mai  Wen Chen  Wei Yang  Hanbo Zou  Shengzhou Chen
Affiliation:1.School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;2.Guangzhou Tinci Materials Technology Co., Ltd., Guangzhou 510760, China
Abstract:Due to high ionic conductivity and wide electrochemical window, the garnet solid electrolyte is considered as the most promising candidate electrolyte for solid-state lithium metal batteries. However, the high contact impedance between metallic lithium and the garnet solid electrolyte surface seriously hampers its further application. In this work, a Li-(ZnO)x anode is prepared by the reaction of zinc oxide with metallic lithium and in situ coated on the surface of Li6.8La3Zr1.8Ta0.2O12(LLZTO). The anode can be perfectly bound to the surface of LLZTO solid electrolyte, and the anode/electrolyte interfacial resistance was reduced from 2319 to 33.75 Ω·cm2. The Li-(ZnO)0.15|LLZTO|Li-(ZnO)0.15 symmetric battery exhibits a stable Li striping/plating process during charge-discharging at a constant current density of 0.1 mA·cm-2 for 100 h at room temperature. Moreover, a Li-(ZnO)0.15|LLZTO-SPE|LFP full battery, comprised of a polyethylene oxide-based solid polymer electrolyte (SPE) film as an interlayer between LiFePO4 (LFP) cathode and LLZTO solid electrolyte, presents an excellent performance at 60 ℃. The discharge capacity of the full battery reaches 140 mA·h·g-1 at 0.1 C and the capacity attenuation is less than 3% after 50 cycles.
Keywords:Lithium metal battery                                              Solid-state electrolyte                                              Li-ZnO anode
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号