首页 | 本学科首页   官方微博 | 高级检索  
     

悬挑式张弦罩棚结构的风致疲劳分析
引用本文:夏亮,王潮,张明山,李本悦. 悬挑式张弦罩棚结构的风致疲劳分析[J]. 建筑结构学报, 2021, 42(Z1): 369-377. DOI: 10.14006/j.jzjgxb.2021.S1.0041
作者姓名:夏亮  王潮  张明山  李本悦
作者单位:1.浙江大学建筑设计研究院, 浙江杭州 310058; 2.浙江大学 平衡建筑研究中心, 浙江杭州 310028;3.东南大学 土木工程学院, 江苏南京 211189
基金项目:住房和城乡建设部科技项目(2019-k-076),浙江省建设科研项目(2019K027), 浙江大学平衡建筑研究中心项目(281410-I5200I)。
摘    要:悬挑式张弦梁结构是由传统张弦梁结构改进的高效空间结构,其单榀张弦梁结构由上拉索、弦杆以及下抗风索组合而成。由于此类结构的风致振动效应显著,有必要研究其风致疲劳效应的影响。为研究悬挑式张弦罩棚结构的风致疲劳损伤,以某体育场罩棚为研究对象,采用几何缩尺比为1∶150的ABS塑料刚性模型进行B类风场下的风洞试验,得到各测点的风压时程数据,转化为有限元模型的节点风荷载进行风致振动响应分析并得到拉索的应力时程。利用雨流计数法对拉索的应力时程进行统计计数,并结合EuroCode2中所推荐的拉索S-N曲线,采用Miner准则对拉索的疲劳损伤进行线性累积,从而对该悬挑式张弦梁结构中的拉索进行疲劳损伤评估。结果表明:拉索构件的风致疲劳损伤随风向角变化明显,最不利风向角在180°附近;由于拉索构件的几何非线性特性,其疲劳损伤随风速变化呈非线性增长趋势。

关 键 词:悬挑式张弦梁结构   预应力拉索   风洞试验   风致响应   风致疲劳  

Wind-induced fatigue analysis of a cantilevered string canopy structure
XIA Liang,WANG Chao,ZHANG Mingshan,LI Benyue. Wind-induced fatigue analysis of a cantilevered string canopy structure[J]. Journal of Building Structures, 2021, 42(Z1): 369-377. DOI: 10.14006/j.jzjgxb.2021.S1.0041
Authors:XIA Liang  WANG Chao  ZHANG Mingshan  LI Benyue
Affiliation:1. Architectural Design and Research Institute of Zhejiang University, Hangzhou 310058, China;2.Center for balance architecture, Zhejiang University, Hangzhou 310028, China;3. Department of Civil Engineering, Southeast University, Nanjing 211189, China;
Abstract:Cantilever string structure is a high-efficiency space structure improved from traditional beam-string structure, where the single joist chord structure is composed of upper prestressed cable, chord, and lower prestressed cable. Due to the significant wind-induced effect of such type of structure, it is necessary to investigate its wind-induced fatigue effects. In this paper, a case study of a canopy structure of a stadium was presented to evaluate wind-induced fatigue damage. In order to obtain the time history of wind pressure at each measuring point, a rigid model made of ABS plastic with a geometric scale ratio of 1:150 was adopted to conduct the wind tunnel test in the B-type wind field. Time histories of steel cable stresses were obtained from the finite element simulation, where the node wind loads were transformed from the wind pressure measurement results obtained by the wind tunnel test. The time histories of cable stress obtained from the wind vibration analysis were counted as series of stress ranges by the rainflow counting algorithm. The Miner rule was used to estimate the linear accumulation of fatigue damage based on the S-N relationship of steel cable recommended by Eurocode 2. The results show that the wind-induced fatigue damage of cables varies significantly with the wind direction angle, and the maximum values are generally obtained around wind direction angle of 180°. The fatigue damage increases nonlinearly with the wind speed due to the geometrical nonlinearity of the cable members.
Keywords:cantilever string structure   prestressed cable   wind tunnel test   wind-induced response   wind-induced fatigue  
点击此处可从《建筑结构学报》浏览原始摘要信息
点击此处可从《建筑结构学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号