首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的工控网络异常流量检测
引用本文:张艳升,李喜旺,李丹,杨华. 基于卷积神经网络的工控网络异常流量检测[J]. 计算机应用, 2019, 39(5): 1512-1517. DOI: 10.11772/j.issn.1001-9081.2018091928
作者姓名:张艳升  李喜旺  李丹  杨华
作者单位:中国科学院大学,北京100049;中国科学院沈阳计算技术研究所,沈阳110168;中国科学院沈阳计算技术研究所,沈阳,110168;国家电网公司东北电力调控分中心,沈阳,110180
基金项目:国家科技重大专项(2017ZX01030-201)。
摘    要:针对工控系统中传统的异常流量检测模型在识别异常上准确率不高的问题,提出一种基于卷积神经网络(CNN)的异常流量检测模型。该模型以卷积神经网络算法为核心,主要由1个卷积层、1个全连接层、1个dropout层以及1个输出层构成。首先,将实际采集的网络流量特征数值规约到与灰度图像素值相对应的范围内,生成网络流量灰度图;然后,将生成好的网络流量灰度图输入到设计好的卷积神经网络结构中进行训练和模型调优;最后,将训练好的模型用于工控网络异常流量检测。实验结果表明,所提模型识别精度达到97.88%,且与已有的精度最高反向传播(BP)神经网络测精度提高了5个百分点。

关 键 词:卷积神经网络  异常流量监测  工控网络  特征提优  深度学习
收稿时间:2018-09-17
修稿时间:2018-12-07

Abnormal flow monitoring of industrial control network based on convolutional neural network
ZHANG Yansheng,LI Xiwang,LI Dan,YANG Hua. Abnormal flow monitoring of industrial control network based on convolutional neural network[J]. Journal of Computer Applications, 2019, 39(5): 1512-1517. DOI: 10.11772/j.issn.1001-9081.2018091928
Authors:ZHANG Yansheng  LI Xiwang  LI Dan  YANG Hua
Affiliation:1. University of Chinese Academy of Sciences, Beijing 100049, China;2. Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang Liaoning 110168, China;3. Electric Power Control Northeast Branch Center, State Grid Corporation of China, Shenyang Liaoning 110180, China
Abstract:Aiming at the inaccuracy of traditional abnormal flow detection model in the industrial control system, an abnormal flow detection model based on Convolutional Neural Network (CNN) was proposed. The proposed model was based on CNN algorithm and consisted of a convolutional layer, a full connection layer, a dropout layer and an output layer. Firstly, the actual collected network flow characteristic values were scaled to a range corresponding to the grayscale pixel values, and the network flow grayscale map was generated. Secondly, the generated network traffic grayscale image was put into the designed convolutional neural network structure for training and model tuning. Finally, the trained model was used to the abnormal flow detection of the industrial control network. The experimental results show that the proposed model has a recognition accuracy of 97.88%, which is 5 percentage points higher than that of Back Propagation (BP) neural network with the existing highest accuracy.
Keywords:Convolutional Neural Network (CNN)   abnormal flow monitoring   industrial control network   feature optimization   deep learning
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号