首页 | 本学科首页   官方微博 | 高级检索  
     

基于多注意力长短时记忆的实体属性情感分析
引用本文:支淑婷,李晓戈,王京博,王鹏华. 基于多注意力长短时记忆的实体属性情感分析[J]. 计算机应用, 2019, 39(1): 160-167. DOI: 10.11772/j.issn.1001-9081.2018061232
作者姓名:支淑婷  李晓戈  王京博  王鹏华
作者单位:西安邮电大学计算机学院,西安710121;陕西省网络数据分析与智能处理重点实验室(西安邮电大学),西安710121;北京小米智能科技有限公司人工智能与云平台,北京,100085
基金项目:陕西省重点研发计划项目(2018ZDXM-GY-043);陕西省科技创新基金资助项目(2016KTZDGY04-03);陕西省咸阳市重大科技创新专项(103-203990009);西安邮电大学研究生创新基金资助项目(103-602080017)。
摘    要:属性情感分析是细粒度的情感分类任务。针对传统神经网络模型无法准确构建属性情感特征的问题,提出了一种融合多注意力和属性上下文的长短时记忆(LSTM-MATT-AC)神经网络模型。在双向长短时记忆(LSTM)的不同位置加入不同类型的注意力机制,充分利用多注意力机制的优势,让模型能够从不同的角度关注句子中特定属性的情感信息,弥补了单一注意力机制的不足;同时,融合双向LSTM独立编码的属性上下文语义信息,获取更深层次的情感特征,有效识别特定属性的情感极性;最后在Sem Eval2014 Task4和Twitter数据集上进行实验,验证了不同注意力机制和独立上下文处理方式对属性情感分析模型的有效性。实验结果表明,模型在Restaurant、Laptop和Twitter领域数据集上的准确率分别达到了80. 6%、75. 1%和71. 1%,较之前基于神经网络的情感分析模型在准确率上有了进一步的提高。

关 键 词:属性情感分析  多注意力机制  上下文语义特征  神经网络  自然语言处理
收稿时间:2018-06-13
修稿时间:2018-08-26

Sentiment analysis of entity aspects based on multi-attention long short-term memory
ZHI Shuting,LI Xiaoge,WANG Jingbo,WANG Penghua. Sentiment analysis of entity aspects based on multi-attention long short-term memory[J]. Journal of Computer Applications, 2019, 39(1): 160-167. DOI: 10.11772/j.issn.1001-9081.2018061232
Authors:ZHI Shuting  LI Xiaoge  WANG Jingbo  WANG Penghua
Affiliation:1. School of Computer Science & Technology, Xi'an University of Posts and Telecommunications, Xi'an Shaanxi 710121, China;2. Shaanxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing(Xi'an University of Posts and Telecommunications), Xi'an Shaanxi 710121, China;3. Artificial Intelligence & Cloud Platform, Beijing Xiaomi Intelligent Technology Company Limited, Beijing 100085, China
Abstract:Aspect sentiment analysis is a fine-grained task in sentiment classification. Concerning the problem that traditional neural network model can not accurately construct sentiment features of aspects, a Long Short-Term Memory with Multi-ATTention and Aspect Context (LSTM-MATT-AC) neural network model was proposed. Different types of attention mechanisms were added in different positions of bidirectional Long Short-Term Memory (LSTM), and the advantage of multi-attention mechanism was fully utilized to allow the model to focus on sentiment information of specific aspects in sentence from different perspectives, which could compensate the deficiency of single attention mechanism. At the same time, combining aspect context information of bidirectional LSTM independent coding, the model could capture deeper level sentiment information and effectively distinguish sentiment polarity of different aspects. Experiments on SemEval2014 Task4 and Twitter datasets were carried out to verify the effectiveness of different attention mechanisms and independent context processing on aspect sentiment analysis. The experimental results show that the accuracy of the proposed model reaches 80.6%, 75.1% and 71.1% respectively for datasets in domain Restaurant, Laptop and Twitter. Compared with previous neural network-based sentiment analysis models, the accuracy has been further improved.
Keywords:aspect sentiment analysis  multi-attention mechanism  contextual semantic feature  neural network  Natural Language Processing (NLP)  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号