首页 | 本学科首页   官方微博 | 高级检索  
     

SQM:基于Spark的大规模单图上的子图匹配算法
引用本文:李龙洋,董一鸿,施炜杰,潘剑飞. SQM:基于Spark的大规模单图上的子图匹配算法[J]. 计算机应用, 2019, 39(1): 46-50. DOI: 10.11772/j.issn.1001-9081.2018071594
作者姓名:李龙洋  董一鸿  施炜杰  潘剑飞
作者单位:宁波大学信息科学与工程学院,浙江宁波,315211;宁波大学信息科学与工程学院,浙江宁波315211;北京百度在线科技有限公司,北京100084
基金项目:国家自然科学基金资助项目(61572266);浙江省自然科学基金资助项目(LY16F020003);宁波市自然科学基金资助项目(2017A610114)。
摘    要:针对大规模数据图下基于回溯法的子图查询算法的准确率低、开销大等问题,为提高查询准确率,降低大图下的查询开销,提出一种基于Spark的子图匹配(SQM)算法。首先根据结构信息过滤数据图,再将查询图分割成基本查询单元;然后对每一个基本查询单元分别匹配后进行Join操作;最后运用并行化提高了算法的运行效率,减小了搜索空间。实验结果表明,与Stwig、Turbo ISO算法相比,SQM算法在保证查询结果不变的情况下,速度提高了50%。

关 键 词:子图匹配  图分割  大规模单图  并行化  SPARK
收稿时间:2018-07-19
修稿时间:2018-08-09

SQM: subgraph matching algorithm for single large-scale graphs under Spark
LI Longyang,DONG Yihong,SHI Weijie,PAN Jianfei. SQM: subgraph matching algorithm for single large-scale graphs under Spark[J]. Journal of Computer Applications, 2019, 39(1): 46-50. DOI: 10.11772/j.issn.1001-9081.2018071594
Authors:LI Longyang  DONG Yihong  SHI Weijie  PAN Jianfei
Affiliation:1. College of Information Science and Engineering, Ningbo University, Ningbo Zhejiang 315211, China;2. Baidu Online Technology Company Limited, Beijing 100084, China
Abstract:Focusing on low accuracy and high costs of backtracking-based subgraph query algorithm applied to large-scale graphs, a Spark-based Subgraph Query Matching (SQM) algorithm was proposed to improve query accuracy and reduce query overhead for large graphs. The data graph was firstly filtered according to structure information, and the query graph was divided into basic query units. Then each basic query unit was matched and joined together. Finally, the algorithm's efficiency was improved and search space was reduced by parallelization. The experimental results show that compared with Stwig (Sub twig) algorithm and TurboISO algorithm, SQM algorithm can increase the speed by 50% while ensuring the same query results.
Keywords:subgraph matching   graph segmentation   single large-scale graph   parallelization   Spark
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号