首页 | 本学科首页   官方微博 | 高级检索  
     

基于最大间隔准则的鲁棒多流形判别局部图嵌入算法
引用本文:杨洋,王正群,徐春林,严陈,鞠玲. 基于最大间隔准则的鲁棒多流形判别局部图嵌入算法[J]. 计算机应用, 2019, 39(5): 1453-1458. DOI: 10.11772/j.issn.1001-9081.2018102113
作者姓名:杨洋  王正群  徐春林  严陈  鞠玲
作者单位:扬州大学信息工程学院,江苏扬州,225127;北方激光科技集团有限公司,江苏扬州,225009
基金项目:国家自然科学基金资助项目(61402395);江苏省科技攻关项目(BY201506-01)。
摘    要:针对现有的多流形人脸识别算法大多直接使用带有噪声的原始数据进行处理,而带有噪声的数据往往会对算法的准确率产生负面影响的问题,提出了一种基于最大间距准则的鲁棒多流形判别局部图嵌入算法(RMMDLGE/MMC)。首先,通过引入一个降噪投影对原始数据进行迭代降噪处理,提取出更加纯净的数据;其次,对数据图像进行分块,建立多流形模型;再次,结合最大间隔准则的思想,寻求最优的投影矩阵使得不同流形上的样本距离尽可能大,同时相同流形上的样本距离尽可能小;最后,计算待识样本流形到训练样本流形的距离进行分类识别。实验结果表明,与表现较好的最大间距准则框架下的多流形局部图嵌入算法(MLGE/MMC)相比,所提算法在添加噪声的ORL、Yale和FERET库上的分类识别率分别提高了1.04、1.28和2.13个百分点,分类效果明显提高。

关 键 词:多流形  降噪投影  图嵌入  最大间隔准则  分类识别
收稿时间:2018-10-19
修稿时间:2018-12-02

Robust multi-manifold discriminant local graph embedding based on maximum margin criterion
YANG Yang,WANG Zhengqun,XU Chunlin,YAN Chen,JU Ling. Robust multi-manifold discriminant local graph embedding based on maximum margin criterion[J]. Journal of Computer Applications, 2019, 39(5): 1453-1458. DOI: 10.11772/j.issn.1001-9081.2018102113
Authors:YANG Yang  WANG Zhengqun  XU Chunlin  YAN Chen  JU Ling
Affiliation:1. School of Information Engineering, Yangzhou University, Yangzhou Jiangsu 225127, China;2. North Laser Technology Group Corporation Limited, Yangzhou Jiangsu 225009, China
Abstract:In most existing multi-manifold face recognition algorithms, the original data with noise are directly processed, but the noisy data often have a negative impact on the accuracy of the algorithm. In order to solve the problem, a Robust Multi-Manifold Discriminant Local Graph Embedding algorithm based on the Maximum Margin Criterion (RMMDLGE/MMC) was proposed. Firstly, a denoising projection was introduced to process the original data for iterative noise reduction, and the purer data were extracted. Secondly, the data image was divided into blocks and a multi-manifold model was established. Thirdly, combined with the idea of maximum margin criterion, an optimal projection matrix was sought to maximize the sample distances on different manifolds while to minimize the sample distances on the same manifold. Finally, the distance from the test sample manifold to the training sample manifold was calculated for classification and identification. The experimental results show that, compared with Multi-Manifold Local Graph Embedding algorithm based on the Maximum Margin Criterion (MLGE/MMC) which performs well, the classification recognition rate of the proposed algorithm is improved by 1.04, 1.28 and 2.13 percentage points respectively on ORL, Yale and FERET database with noise and the classification effect is obviously improved.
Keywords:multi-manifold   denoising projection   graph embedding   maximum margin criterion   classification and identification
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号