首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN-BiGRU-NN模型的短期负荷预测方法
引用本文:曾囿钧,肖先勇,徐方维,郑林. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17-23. DOI: 10.11930/j.issn.1004-9649.202003035
作者姓名:曾囿钧  肖先勇  徐方维  郑林
作者单位:1. 四川大学 电气工程学院,四川 成都 610065;2. 国网四川省电力公司绵阳供电公司,四川 绵阳 621000
基金项目:国家自然科学基金面上资助项目(新一代电力系统中谐波发射水平评估理论与方法,51877141)
摘    要:为充分挖掘蕴含在大量采集数据中的有效信息,提高短期负荷预测精度,提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)、全连接神经网络(NN)的混合模型的短期负荷预测方法,将海量的历史负荷数据、气象信息、日期信息按时间滑动窗口构造特征图作为输入,先利用CNN提取特征图中的有效信息,构造特征向量,再将特征向量...

关 键 词:电力系统  短期负荷预测  卷积神经网络  双向门控循环单元  卷积神经网络-双向门控循环单元神经网络混合模型
收稿时间:2020-03-05
修稿时间:2020-05-26

A Short-Term Load Forecasting Method Based on CNN-BiGRU-NN Model
ZENG Youjun,XIAO Xianyong,XU Fangwei,ZHENG Lin. A Short-Term Load Forecasting Method Based on CNN-BiGRU-NN Model[J]. Electric Power, 2021, 54(9): 17-23. DOI: 10.11930/j.issn.1004-9649.202003035
Authors:ZENG Youjun  XIAO Xianyong  XU Fangwei  ZHENG Lin
Affiliation:1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China;2. Mianyang Power Supply Company, State Grid Sichuan Power Supply Company, Mianyang 621000, China
Abstract:In order to fully mine the effective information contained in a large number of collected data and improve the accuracy of short-term load forecasting, a short-term load forecasting method is proposed based on a hybrid model of convolutional neural network (CNN), bidirectional gated recurrent unit (BiGRU), and fully connected neural network (NN). The massive historical load data, meteorological information, and date information are taken to construct feature maps according to time sliding windows. Firstly, the CNN is used to extract valid information from the feature maps to construct feature vectors. And then, by taking the feature vectors as the inputs, the BiGRU-NN network is used to make short-term load forecasting. The load data in the test question A of the Ninth National Electrical Mathematics Modeling Contest held in 2016 are taken as an actual computation example, and the experimental results show that this method has higher accuracy in short-term load forecasting than GRU neural network, DNN neural network, and CNN-LSTM neural network.
Keywords:power system  short-term load forecasting  convolutional neural network  bidirectional gated recurrent unit  convolutional neural network-bidirectional gated recurrent unit neural network hybrid model  
点击此处可从《中国电力》浏览原始摘要信息
点击此处可从《中国电力》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号