首页 | 本学科首页   官方微博 | 高级检索  
     

云数据中心基于贪心模式的虚拟机选择算法
引用本文:蔡豪,袁正道. 云数据中心基于贪心模式的虚拟机选择算法[J]. 计算机应用, 2020, 40(6): 1707-1713. DOI: 10.11772/j.issn.1001-9081.2019111988
作者姓名:蔡豪  袁正道
作者单位:1.河南广播电视大学 信息技术中心, 郑州 450008
2.河南广播电视大学 信息工程学院, 郑州 450001
基金项目:河南省高等学校青年骨干教师培养计划(2017GGJS135);河南省科技攻关项目(182102210573);中国博士后科学基金面上项目(2019M652576);河南省博士后科研基金启动基金资助项目(19030016)。
摘    要:针对如何从云数据中心的异常物理主机中选择出候选迁移虚拟机列表是虚拟机迁移中的问题,提出了基于贪心模式的虚拟机选择算法(GAO-VMS)。GAO-VMS每次都选择那些目标函数最优的虚拟机作为标准来迁移,形成候选迁移虚拟机列表,它有三类贪心模式:最大能量降低消耗策略(MPR)、最小迁移时间及能量消耗均衡策略(TPT)、最小每秒百万条指令数虚拟机请求策略(VVM)。使用CloudSim模拟器作为GAO-VMS的仿真环境。仿真结果表明:与常见的虚拟机迁移策略相比较,GAO-VMS使得云数据中心的能量消耗减少了30%~35%,虚拟机迁移次数减少了40%~45%,服务等级协议(SLA)违规率以及SLA违规和能量消耗联合指标只有5%的增加。GAO-VMS策略可用于企业构造绿色云计算中心。

关 键 词:智能计算  贪心算法  虚拟机选择  云数据中心  低能量消耗
收稿时间:2019-11-22
修稿时间:2019-12-19

Greedy algorithm optimization based virtual machine selection strategy in cloud data center
CAI Hao,YUAN Zhengdao. Greedy algorithm optimization based virtual machine selection strategy in cloud data center[J]. Journal of Computer Applications, 2020, 40(6): 1707-1713. DOI: 10.11772/j.issn.1001-9081.2019111988
Authors:CAI Hao  YUAN Zhengdao
Affiliation:1. Center of Information Technology, Henan Radio & Television University, Zhengzhou Henan, 450008, China
2. School of Information and Engineering, Henan Radio & Television University, Zhengzhou Henan, 450001, China
Abstract:In the virtual machine migration process,one of the most problems is how to select the candidate migrating virtual machine list from the abnormal physical hosts in cloud data center.Therefore,a Greedy Algorithm Optimization based Virtual Machine Selection algorithm(GAO-VMS)was proposed.In GAO-VMS,the virtual machines with the optimal objective functions would be selected to perform the migration and the candidate migration virtual machine list was formed subsequently.There are three kinds of greedy modes in GAO-VMS:Maximum Power Reduction Policy(MPR),minimum migration Time and Power Tradeoff policy(TPT)and Violated million instructions per second-Virtual Machines policy(VVM).GAO-VMS was evaluated on CloudSim simulator.Simulation results show that compared to the common virtual machine migration strategy,GAO-VMS reduces the energy consumption of cloud data center by 30%-35%,and reduces the number of virtual machine migrations by 40%-45%with 5%increment of the Service Level Agreement(SLA)violation rate and the joint index of SLA violation and energy.The proposed GAO-VMS strategy can be used for enterprises to construct green cloud computing center.
Keywords:intelligent computing   greedy algorithm   virtual machine selection   cloud data centers   low energy consumption
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号