首页 | 本学科首页   官方微博 | 高级检索  
     

富水型热储层深井套管式换热器传热特性研究
引用本文:马玖辰,易飞羽,张秋丽,王宇. 富水型热储层深井套管式换热器传热特性研究[J]. 化工学报, 2021, 72(8): 4134-4145. DOI: 10.11949/0438-1157.20201651
作者姓名:马玖辰  易飞羽  张秋丽  王宇
作者单位:天津城建大学能源与安全工程学院,天津 300384;天津大学中低温热能高效利用教育部重点实验室,天津300072;天津城建大学地热高效利用技术研究中心,天津300384;天津城建大学能源与安全工程学院,天津 300384;天津城建大学地热高效利用技术研究中心,天津300384
基金项目:国家自然科学基金项目(41402228);天津市自然科学基金项目(19JCTPJC48100);国家级大学生创新项目(202010792003)
摘    要:基于所建立的深井套管式换热器井孔内、外非稳态传热模型,推导得到富水型热储层地下水渗流作用下深井换热器进(出)水管、固井水泥温度以及热储层过余温度的瞬态解析解。以示范工程现场监测数据与有限体积法数值计算结果为验证依据,探究热储层中渗流过程对于深井换热器传热特性的影响。计算得到,当深井换热器循环水量稳定在30 m3/h时,热储层中达西流速由0提高到5×10-6 m/s时,平均换热量增大55 kW。然而在忽略热储层中渗流过程时,循环水量由30 m3/h提高到60 m3/h,平均换热量增大34 kW,循环水泵耗功提高20.6 kW。研究表明:随着渗流速度的增大,热储层中的传热机制发生改变,从而强化深井换热器的传热过程;同时降低了循环水流量对于深井换热器换热性能的影响程度。

关 键 词:深井换热器  富水型热储层  传热  数值分析  计算机模拟  渗流过程
收稿时间:2020-11-16

Heat transfer characteristics of coaxial tubes type deep borehole heat exchanger in water-rich geothermal reservoir
Jiuchen MA,Feiyu YI,Qiuli ZHANG,Yu WANG. Heat transfer characteristics of coaxial tubes type deep borehole heat exchanger in water-rich geothermal reservoir[J]. Journal of Chemical Industry and Engineering(China), 2021, 72(8): 4134-4145. DOI: 10.11949/0438-1157.20201651
Authors:Jiuchen MA  Feiyu YI  Qiuli ZHANG  Yu WANG
Affiliation:1.School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300384, China;2.Key Laboratory for Efficient Use of Low and Medium Grade Energy, Ministry of Education, Tianjin University, Tianjin 300072, China;3.Research Center for Efficient Utilization Technology of Geothermal Energy, Tianjin Chengjian University, Tianjin 300384, China
Abstract:According to the operation principle of the coaxial tubes type deep borehole heat exchanger (DBHE), a three-dimensional unsteady state heat transfer model coupled inside and outside of the borehole was established, based upon hydrogeological conditions of water-rich hot reservoirs with the buried depth of 1000—3000 m in Bohai Basin. The transient analytical solutions were obtained by applying Laplace and Fourier transform methods to calculate the vertical temperature profiles in the inlet (outlet) pipe and the grout of the DBHE and the excess temperature in aquifers. The mathematical model and the analytical solutions were validated by the experimental data determined from a demonstration project and the numerical simulation of the finite volume method (FVM). Based on the dual-continuum spatial coupling approach, the influence was performed to examine the seepage process of underground water on the heat transfer performance of the DBHE in water-rich hot reservoirs. The simulated calculation indicates that the average heat exchange capacity increment of the DBHE is up to 55 kW, when the quantity of the circulating water is stable at 30 m3/h and the Darcy velocity of underground water increases from 0 to 5×10-6 m/s in water-rich hot reservoirs. However, the average heat exchange capacity increases 34 kW meanwhile the circulating pump power consumption increases 20.6 kW, ignoring the seepage process, when the quantity of the circulating water is enhanced from 30 m3/h to 60 m3/h. Studies have shown that as the seepage velocity increases, the heat transfer mechanism in the thermal reservoir changes, thereby enhancing the heat transfer process of the deep well heat exchanger; at the same time, it reduces the influence of the circulating water flow on the heat transfer performance of the deep well heat exchanger.
Keywords:deep borehole heat exchanger  water-rich geothermal reservoir  heat transfer  numerical analysis  computer simulation  seepage process  
本文献已被 万方数据 等数据库收录!
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号