首页 | 本学科首页   官方微博 | 高级检索  
     

基于动作模板匹配的弱监督动作定位
引用本文:石祥滨,周金成,刘翠微. 基于动作模板匹配的弱监督动作定位[J]. 计算机应用, 2019, 39(8): 2408-2413. DOI: 10.11772/j.issn.1001-9081.2019010139
作者姓名:石祥滨  周金成  刘翠微
作者单位:辽宁大学信息学院,沈阳110036;沈阳航空航天大学计算机学院,沈阳110136;辽宁大学信息学院,沈阳,110036;沈阳航空航天大学计算机学院,沈阳,110136
基金项目:辽宁省博士启动基金项目(201601172)。
摘    要:为解决视频中的动作定位问题,提出一种基于模板匹配的弱监督动作定位方法。首先在视频的每一帧上给出若干个动作主体位置的候选框,按时间顺序连接这些候选框形成动作提名;然后利用训练集视频的部分帧得到动作模板;最后利用动作提名与动作模板训练模型,找到最优的模型参数。在UCF-sports数据集上进行实验,结果显示,与TLSVM方法相比,所提方法的动作分类准确率提升了0.3个百分点;当重叠度阈值取0.2时,与CRANE方法相比,所提方法的动作定位准确率提升了28.21个百分点。实验结果表明,所提方法不但能够减少数据集标注的工作量,而且动作分类和动作定位的准确率均得到提升。

关 键 词:动作定位  动作模板  弱监督  动作提名  视频
收稿时间:2019-01-23
修稿时间:2019-03-11

Weakly supervised action localization based on action template matching
SHI Xiangbin,ZHOU Jincheng,LIU Cuiwei. Weakly supervised action localization based on action template matching[J]. Journal of Computer Applications, 2019, 39(8): 2408-2413. DOI: 10.11772/j.issn.1001-9081.2019010139
Authors:SHI Xiangbin  ZHOU Jincheng  LIU Cuiwei
Affiliation:1. College of Information, Liaoning University, Shenyang Liaoning 110136, China;2. College of Computer Science, Shenyang Aerospace University, Shenyang Liaoning 110136, China
Abstract:In order to solve the problem of action localization in video, a weakly supervised method based on template matching was proposed. Firstly, several candidate bounding boxes of the action subject position were given on each frame of the video, and then these candidate bounding boxes were connected in chronological order to form action proposals. Secondly, action templates were obtained from some frames of the training set video. Finally, the optimal model parameters were obtained after model training by using action proposals and action templates. In the experiments on UCF-sports dataset, the method has the accuracy of the action classification increased by 0.3 percentage points compared with TLSVM (Transfer Latent Support Vector Machine) method; when the overlapping threshold is 0.2, the method has the accuracy of action localization increased by 28.21 percentage points compared with CRANE method. Experimental results show that the proposed method can not only reduce the workload of dataset annotation, but also improve the accuracy of action classification and action localization.
Keywords:action localization   action template   weakly supervised   action proposal   video
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号