首页 | 本学科首页   官方微博 | 高级检索  
     

盲去模糊的多尺度编解码深度卷积网络
引用本文:贾瑞明,邱桢芝,崔家礼,王一丁. 盲去模糊的多尺度编解码深度卷积网络[J]. 计算机应用, 2019, 39(9): 2552-2557. DOI: 10.11772/j.issn.1001-9081.2019020373
作者姓名:贾瑞明  邱桢芝  崔家礼  王一丁
作者单位:北方工业大学信息学院,北京,100144;北方工业大学信息学院,北京,100144;北方工业大学信息学院,北京,100144;北方工业大学信息学院,北京,100144
基金项目:国家自然科学基金面上项目(61673021)。
摘    要:针对拍摄场景中物体运动不一致所带来的非均匀模糊,为提高复杂运动场景中去模糊的效果,提出一种多尺度编解码深度卷积网络。该网络采用"从粗到细"的多尺度级联结构,在模糊核未知条件下,实现盲去模糊;其中,在该网络的编解码模块中,提出一种快速多尺度残差块,使用两个感受野不同的分支增强网络对多尺度特征的适应能力;此外,在编解码之间增加跳跃连接,丰富解码端信息。与2018年国际计算机视觉与模式识别会议(CVPR)上提出的多尺度循环网络相比,峰值信噪比(PSNR)高出0.06 dB;与2017年CVPR上提出的深度多尺度卷积网络相比,峰值信噪比和平均结构相似性(MSSIM)分别提高了1.4%和3.2%。实验结果表明,该网络能快速去除图像模糊,恢复出图像原有的边缘结构和纹理细节。

关 键 词:盲去模糊  多尺度结构  跳跃连接  编解码  卷积神经网络
收稿时间:2019-03-07
修稿时间:2019-04-19

Deep multi-scale encoder-decoder convolutional network for blind deblurring
JIA Ruiming,QIU Zhenzhi,CUI Jiali,WANG Yiding. Deep multi-scale encoder-decoder convolutional network for blind deblurring[J]. Journal of Computer Applications, 2019, 39(9): 2552-2557. DOI: 10.11772/j.issn.1001-9081.2019020373
Authors:JIA Ruiming  QIU Zhenzhi  CUI Jiali  WANG Yiding
Affiliation:School of Information Science and Technology, North China University of Technology, Beijing 100144, China
Abstract:Aiming at the heterogeneous blur of images caused by inconsistent motion of objects in the shooting scene, a deep multi-scale encoder-decoder convolutional network was proposed to improve the deblurring effect in complex motion scenes. A multi-scale cascade structure named "from coarse to fine" was applied to this network, and blind deblurring was achieved with the blur kernel unknown. In the encoder-decoder module of the network, a fast multi-scale residual block was proposed, which used two branches with different receptive fields to enhance the adaptability of the network to multi-scale features. In addition, skip connections were added between the encoder and the decoder to enrich the information of the decoder. The Peak Signal-to-Noise Ratio (PSNR) value pf this network is 0.06 dB higher than that of the Scale-recurrent Network proposed on CVPR(Conference on Computer Vision and Pattern Recognition)2018; the PSNR and Mean Structural Similarity (MSSIM) values are increased by 1.4% and 3.2% respectively compared to those of the deep multi-scale convolution network proposed on CVPR2017. The experimental results show that the proposed network can deblur the image quickly and restore the edge structure and texture details of the image.
Keywords:blind deblurring   multi-scale structure   skip connection   encoder-decoder   Convolutional Neural Network (CNN)
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号