首页 | 本学科首页   官方微博 | 高级检索  
     

圆片下料并行遗传算法的设计与实现
引用本文:曾志阳,陈燕,王珂. 圆片下料并行遗传算法的设计与实现[J]. 计算机应用, 2020, 40(2): 392-397. DOI: 10.11772/j.issn.1001-9081.2019081397
作者姓名:曾志阳  陈燕  王珂
作者单位:广西大学 计算机与电子信息学院,南宁 530004
基金项目:国家自然科学基金资助项目(71371058)
摘    要:针对制造行业中的圆片下料问题,为了在合理的计算时间内使材料的利用率尽可能高,提出并行遗传下料算法(PGBA),以下料方案的材料利用率作为优化目标函数,将下料方案作为个体,采用多线程的方式对多个子种群并行进行遗传操作。首先,在并行遗传算法的基础上设计特定的个体编码方式,采用启发式方法生成种群的个体,以提高算法的搜索能力和效率,避免早熟现象的发生;然后,采用性能较好的遗传算子进行自适应的遗传操作,搜索出一种近似最优的下料方案;最后,通过多种实验验证算法的有效性。结果表明,与启发式算法相比,PGBA的计算时间有所增加,但材料利用率得到了较大的提高,能有效提高企业的经济效益。

关 键 词:圆片下料  遗传算法  并行计算  启发式方法  动态规划方法  
收稿时间:2019-07-31
修稿时间:2019-09-19

Design and implementation of parallel genetic algorithm for cutting stock of circular parts
Zhiyang ZENG,Yan CHEN,Ke WANG. Design and implementation of parallel genetic algorithm for cutting stock of circular parts[J]. Journal of Computer Applications, 2020, 40(2): 392-397. DOI: 10.11772/j.issn.1001-9081.2019081397
Authors:Zhiyang ZENG  Yan CHEN  Ke WANG
Affiliation:School of Computer,Electronics and Information,Guangxi University,Nanning Guangxi 530004,China
Abstract:For the cutting stock problem of circular parts which is widely existed in many manufacturing industries, a new parallel genetic algorithm for cutting stock was proposed to maximize the material utilization within a reasonable computing time, namely Parallel Genetic Blanking Algorithm (PGBA). In PGBA, the material utilization rate of cutting plan was used as the optimization objective function, and the multithread was used to perform the genetic manipulation on multiple subpopulations in parallel. Firstly, a specific individual coding method was designed based on the parallel genetic algorithm, and a heuristic method was used to generate the individuals of population to improve the search ability and efficiency of the algorithm and avoid the premature phenomena. Then, an approximate optimal cutting plan was searched out by adaptive genetic operations with better performance. Finally, the effectiveness of the algorithm was verified by various experiments. The results show that compared with the heuristic algorithm proposed in literature, PGBA takes longer computing time, but has the material utilization rate greatly improved, which can effectively improve the economic benefits of enterprises.
Keywords:cutting stock of circular parts   genetic algorithm   parallel computing   heuristic method   dynamic programming method
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号