首页 | 本学科首页   官方微博 | 高级检索  
     

结合优化支持向量机与K-means++的工控系统入侵检测方法
引用本文:陈万志,徐东升,张静,唐雨. 结合优化支持向量机与K-means++的工控系统入侵检测方法[J]. 计算机应用, 2019, 39(4): 1089-1094. DOI: 10.11772/j.issn.1001-9081.2018091932
作者姓名:陈万志  徐东升  张静  唐雨
作者单位:辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛,125105;渤海装备辽河重工有限公司,辽宁盘锦,124010
基金项目:辽宁工程技术大学博士启动基金资助项目(2015-1147);辽宁省教育厅服务地方类项目(LJ2017FAL009)。
摘    要:针对工业控制系统传统单一检测算法模型对不同攻击类型检测率和检测速度不佳的问题,提出一种优化支持向量机和K-means++算法结合的入侵检测模型。首先利用主成分分析法(PCA)对原始数据集进行预处理,消除其相关性;其次在粒子群优化(PSO)算法的基础上加入自适应变异过程避免在训练的过程中陷入局部最优解;然后利用自适应变异粒子群优化(AMPSO)算法优化支持向量机的核函数和惩罚参数;最后利用密度中心法改进K-means算法与优化后的支持向量机组合成入侵检测模型,从而实现工业控制系统的异常检测。实验结果表明,所提方法在检测速度和对各类攻击的检测率上得到明显提升。

关 键 词:工业控制系统  主成分分析  粒子群优化算法  支持向量机  密度中心法  K-MEANS算法
收稿时间:2018-09-17
修稿时间:2018-11-25

Intrusion detection method for industrial control system with optimized support vector machine and K-means++
CHEN Wanzhi,XU Dongsheng,ZHANG Jing,TANG Yu. Intrusion detection method for industrial control system with optimized support vector machine and K-means++[J]. Journal of Computer Applications, 2019, 39(4): 1089-1094. DOI: 10.11772/j.issn.1001-9081.2018091932
Authors:CHEN Wanzhi  XU Dongsheng  ZHANG Jing  TANG Yu
Affiliation:1. School of Electronic and Information Engineering, Liaoning Technical University, Huludao Liaoning 125105, China;2. China Petroleum Liaohe Equipment Company, Panjin Liaoning 124010, China
Abstract:Aiming at the problem that traditional single detection algorithm models have low detection rate and slow detection speed on different types of attacks in industrial control system, an intrusion detection model combining optimized Support Vector Machine (SVM) and K-means++algorithm was proposed. Firstly, the original dataset was preprocessed by Principal Component Analysis (PCA) to eliminate its correlation. Secondly, an adaptive mutation process was added to Particle Swarm Optimization (PSO) algorithm to avoid falling into local optimal solution during the training process. Thirdly, the PSO with Adaptive Mutation (AMPSO) algorithm was used to optimize the kernel function and penalty parameters of the SVM. Finally, a K-means algorithm improved by density center method was united with the optimized support vector machine to form the intrusion detection model, achieving anomaly detection of industrial control system. The experimental results show that the proposed method can significantly improve the detection speed and the detection rate of various attacks.
Keywords:industrial control system  Principal Component Analysis (PCA)  Particle Swarm Optimization (PSO) algorithm  Support Vector Machine (SVM)  density center method  K-means algorithm  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号