首页 | 本学科首页   官方微博 | 高级检索  
     


Elucidating the role of hyaluronic acid in the structure and morphology of calcium oxalate crystals
Affiliation:1. Department of Chemical Engineering, Faculty of Engineering, Marmara University, 34722 İstanbul, Turkey;2. Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, the Netherlands;3. Process & Energy Department, Delft University of Technology, 2628 CB Delft, the Netherlands
Abstract:Recent surge in reports describing new additives that inhibiting the growth and nucleation of calcium oxalate (CaOx), the most common component of renal calculi or kidney stones, have rekindled interest in CaOx crystallization. In this in vitro study, the effect of hyaluronic acid (HA), a protein commonly found in urine, on the morphology and phase of the CaOx crystals is investigated. CaOx crystals were crystallized at pH 5.8 and 37 °C with a Ca2+]:C2O42-] ratio of 20:1, which is close to physiological conditions, in aqueous solution and artificial urine media. The obtained crystals were characterized structurally, morphologically and in terms of their surface charge. The crystals precipitated in aqueous solution without the HA additive were pure phase calcium oxalate monohydrate (COM) crystals with typical hexagonal morphology. The addition of HA partially promotes the transformation of COM into calcium oxalate dihydrate (COD) in aqueous solution. However, the only solid phase to form in artificial urine media with and without HA was identified as COD with tetragonal bipyramidal morphology. The results of this investigation will contribute to the understanding of the role HA plays on the morphology, structure, and thermal characteristics of CaOx and ultimately facilitate the development of effective treatments for kidney stones.
Keywords:Calcium oxalate  Crystallization  Hyaluronic acid  Morphology  Kinetics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号