首页 | 本学科首页   官方微博 | 高级检索  
     


Using anodic aluminum oxide templates and electrochemical method to deposit BiSbTe-based thermoelectric nanowires
Authors:Hsin-Hui Kuo  Chin-Guo Kuo  Chia-Ying Yen  Cheng-Fu Yang
Affiliation:1.Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan;2.Department of Industrial Education, National Taiwan Normal University, Taipei 106, Taiwan;3.Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
Abstract:In this study, the cyclic voltammetry method was first used to find the reduced voltages and anodic peaks of Bi3+, Sb3+, and Te4+ ions as the judgments for the growth of the (Bi,Sb)2 - x Te3 + x-based materials. Ethylene glycol (C2H6O2) was used as a solvent, and 0.3 M potassium iodide (KI) was used to improve the conductivity of the solution. Two different electrolyte formulas were first used: (a) 0.01 M Bi(NO3)3-5H2O, 0.01 M SbCl3, and 0.01 M TeCl4 and (b) 0.015 M Bi(NO3)3-5H2O, 0.005 M SbCl3, and 0.0075 M TeCl4. The potentiostatic deposition process was first used to find the effect of reduced voltage on the variation of compositions of the (Bi,Sb)2 - xTe3 + x-based materials. After finding the better reduced voltage, 0.01 M Bi(NO3)3-5H2O, 0.01 M SbCl3, and 0.01 M TeCl4 were used as the electrolyte formula. The pulse deposition process was successfully used to control the composition of the (Bi,Sb)2 - xTe3 + x-based materials and grow the nanowires in anodic aluminum oxide (AAO) templates.
Keywords:Thermoelectric  Cyclic voltammetry  Electrolyte formula  Nanowires
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号