首页 | 本学科首页   官方微博 | 高级检索  
     


Klotho protein protects against endothelial dysfunction
Authors:Y Saito  T Yamagishi  T Nakamura  Y Ohyama  H Aizawa  T Suga  Y Matsumura  H Masuda  M Kurabayashi  M Kuro-o  Y Nabeshima  R Nagai
Affiliation:Division of Allergy and Immunology, University of Wisconsin, Madison, USA.
Abstract:Viral respiratory infections cause acute airway abnormalities consisting of inflammation and physiological dysfunction in both animals and humans. It is likely that inflammatory cell products, such as cytokines, contribute substantially to viral-induced airway dysfunction. We hypothesized that imiquimod, an immune response enhancing agent that induces interferon-alpha, would attenuate the development of airway dysfunction during acute viral illness in rats. Adult Brown Norway rats were inoculated with parainfluenza type 1 (Sendai) virus or sterile vehicle, and treated with either imiquimod or water. Respiratory system resistance (Rrs), arterial oxygen tension (Pa,O2), lung viral titres and bronchoalveolar lavage (BAL) leucocyte counts were measured in anaesthetized, paralysed, ventilated rats. Virus-infected, water-treated rats had a significant decrease in Pa,O2 and had significant increases in leucocyte count and Rrs when compared to both the virus-infected, imiquimod-treated, (Pa,O2, p = 0.03; leucocyte count, p = 0.02; and Rrs, p = 0.009) and noninfected, water-treated rats (Pa,O2, p = 0.007; leucocyte count, p = 0.001; and Rrs, p = 0.01). In addition, imiquimod suppressed BAL eosinophils in both virus-infected (p = 0.02) and noninfected (p = 0.001) groups, and lowered overall virus titres (p = 0.03). Thus, both virus-induced airway inflammation and physiological dysfunction were attenuated significantly by imiquimod treatment in this animal model. By further delineating mechanisms by which infections induce airway dysfunction in animal models, more specific pharmacological interventions can be developed for the treatment of virus-induced asthma.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号