首页 | 本学科首页   官方微博 | 高级检索  
     


Control of the DnaK chaperone cycle by substoichiometric concentrations of the co-chaperones DnaJ and GrpE
Authors:EV Pierpaoli  E Sandmeier  HJ Sch?nfeld  P Christen
Affiliation:Biochemisches Institut, Universit?t Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
Abstract:The polypeptide binding and release cycle of the molecular chaperone DnaK (Hsp70) of Escherichia coli is regulated by the two co-chaperones DnaJ and GrpE. Here, we show that the DnaJ-triggered conversion of DnaK.ATP (T state) to DnaK.ADP.Pi (R state), as monitored by intrinsic protein fluorescence, is monophasic and occurs simultaneously with ATP hydrolysis. This is in contrast with the T-->R conversion in the absence of DnaJ which is biphasic, the first phase occurring simultaneously with the hydrolysis of ATP (Theyssen, H., Schuster, H.-P., Packschies, L., Bukau, B., and Reinstein, J. (1996) J. Mol. Biol. 263, 657-670). Apparently, DnaJ not only stimulates ATP hydrolysis but also couples it with conformational changes of DnaK. In the absence of GrpE, DnaJ forms a tight ternary complex with peptide.DnaK.ADP.Pi (Kd = 0.14 microM). However, by monitoring complex formation between DnaK (1 microM) and a fluorophore-labeled peptide in the presence of ATP (1 mM), DnaJ (1 microM), and varying concentrations of the ADP/ATP exchange factor GrpE (0.1-3 microM), substoichiometric concentrations of GrpE were found to shift the equilibrium from the slowly binding and releasing, high-affinity R state of DnaK completely to the fast binding and releasing, low-affinity T state and thus to prevent the formation of a long lived ternary DnaJ. substrate.DnaK.ADP.Pi complex. Under in vivo conditions with an estimated chaperone ratio of DnaK:DnaJ:GrpE = 10:1:3, both DnaJ and GrpE appear to control the chaperone cycle by transient interactions with DnaK.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号