首页 | 本学科首页   官方微博 | 高级检索  
     

利用时空背景模型的快速运动目标检测方法
引用本文:陈明生,梁光明,孙即祥,刘东华,赵键. 利用时空背景模型的快速运动目标检测方法[J]. 中国图象图形学报, 2011, 16(6): 1002-1007
作者姓名:陈明生  梁光明  孙即祥  刘东华  赵键
作者单位:国防科技大学
摘    要:为了弥补运动目标检测中传统混合高斯背景模型仅对单个像素建模、运算耗时的不足,通过提取背景时间统计特征和空间区域特征建立模型,针对模型中的高斯分量采用一种改进的分量个数自适应算法,并在此模型基础上,提出一种自适应迭代分块目标检测方法。通过包含区域信息的背景模型检测目标,减少在同一背景区域中目标的误判和漏判。将自适应迭代分块检测算法与背景的区域信息结合,可以在不降低检测精度的前提下大大提高算法执行速度。实验结果表明,相对于传统算法,本文检测法检测结果信噪比更高,目标更加完整,运行速度平均提高了22%。

关 键 词:混合高斯   背景区域   自适应   分块检测
收稿时间:2010-03-08
修稿时间:2011-03-24

Fast moving object detection method using temporal-spatial background model
Chen Mingsheng,Liang Guangming,Sun Jixiang,Liu Donghua and Zhao Jian. Fast moving object detection method using temporal-spatial background model[J]. Journal of Image and Graphics, 2011, 16(6): 1002-1007
Authors:Chen Mingsheng  Liang Guangming  Sun Jixiang  Liu Donghua  Zhao Jian
Affiliation:Chen Mingsheng,Liang Guangming,Sun Jixiang,Liu Donghua,Zhao Jian(Electronic Engineering and science technology college,national university of defense technology,changsha 410073 China)
Abstract:Moving objects extraction is a key part of video surveillance system. To improve the performance of moving objects detection method based on the Gaussian Mixture Model(GMM), an iterative detection algorithm with adaptive partitioning block of pixels is proposed. It is based on the temporal-spatial background that the number of components is improved adaptively and the feature of areas extracted spatially is combined. With the spatial areas information, the algorithm decreases the number of small fake objects and reduces the fragmentation of objects that caused by all kinds of noise. Comparing with detection method based on single pixel, the proposed method would not almost impact the detected results when it reduces the algorithm computation obviously. The results show that the objects extracted by the proposed method with higher SNR and the processing time decreases 22% contrasting to traditional algorithm.
Keywords:GMM   areas of background   adaptive   partition block detection
本文献已被 CNKI 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号