首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于动态人工神经网络的Wiener模型辨识
引用本文:李世华,吴福保,李 奇. 一种基于动态人工神经网络的Wiener模型辨识[J]. 控制理论与应用, 2000, 17(1): 92-95
作者姓名:李世华  吴福保  李 奇
作者单位:1. 东南大学自动控制系·南京,210096
2. 东南大学自动化研究所·南京,210096
摘    要:提出了一种新的辨识模型对Wiener模型进行辨识,该模型 线性动态神经元串联一静态网络模型组成,利用线性动态神经元对Wiener模型的线性动态部分建模,利用静态BP网络逼近模型的静态非线性部分,并且给出了统一的BP辨识算法,仿真结果表明了该方法的有效性。

关 键 词:人工神经网络 系统辨识 Wiener模型
收稿时间:1998-05-04
修稿时间:1998-05-04

Identification of Wiener Model Using Dynamic Artificial Neural Networks
LI Shi-hu,WU Fu-bao and LI Qi. Identification of Wiener Model Using Dynamic Artificial Neural Networks[J]. Control Theory & Applications, 2000, 17(1): 92-95
Authors:LI Shi-hu  WU Fu-bao  LI Qi
Affiliation:Department of Automatic Control,Southeast University, Nanjing,210096,P.R.China;Research Institute of Automation,Southeast University, Nanjing,210096,P.R.China;Research Institute of Automation,Southeast University, Nanjing,210096,P.R.China
Abstract:The problem ofidentification of a Wiener model is studied.The proposed identification method uses adynamic neural network (DANN) which consists of a linear dynamic neuron (LDN) in cascadewith a static BP neural network (SBP).A unified back-propagation algorithm is proposed toestimate the weights and the biases of the LDN and the SBP simultaneously.Numericalexamples are provided to show the efficiency of the proposed method.
Keywords:neural networks  nonlinear systems identification  Wiener model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号