首页 | 本学科首页   官方微博 | 高级检索  
     

短期负荷可预报天数的初步研究
引用本文:杨正瓴,林孔元. 短期负荷可预报天数的初步研究[J]. 电力系统自动化, 2002, 26(11): 14-18
作者姓名:杨正瓴  林孔元
作者单位:天津大学自动化学院,天津市,300072;天津大学自动化学院,天津市,300072
摘    要:只依据历史数据的短期负荷预报,预报准确率会随预报时间的增大而明显降低。这种现象来源于负荷记录的混沌特性。通过傅里叶级数展开,以及吸引子的相关维数、最大李雅普诺夫指数等分析,发现某地的负荷是双周期行为和混沌行为的合成。双周期成分是可以精确预报的,负荷预报的误差主要来自混沌成分。混沌成分的可预报天数约为15 d。按混沌成分占负荷的比重折算后,得到的负荷可预报天数约为3 d。

关 键 词:负荷预报  负荷预报天数  双周期  混沌  李雅普诺夫指数
收稿时间:1900-01-01
修稿时间:1900-01-01

A PRELIMINARY STUDY ON PREDICTABLE SHORT-TERM LOAD FORECASTING TIME
Yang Zhengling,Lin Kongyuan. A PRELIMINARY STUDY ON PREDICTABLE SHORT-TERM LOAD FORECASTING TIME[J]. Automation of Electric Power Systems, 2002, 26(11): 14-18
Authors:Yang Zhengling  Lin Kongyuan
Abstract:When short terms loads are forecasted only by the historical load records, the forecasting precision will decrease with the forecasting time increases. This phenomenon is caused by the chaotic characteristic of the load records. By Fourier series decompositions, relative dimension testing of attractor, and largest Lyapunov exponent calculating, it is proved that the load records of an area in china are composed of the double period and chaotic components. Since the double period component can be forecasted accurately, the load forecasting errors are chiefly caused by the chaotic component. The predictable time of chaotic component is about 1.5 days, so the load predictable time is about 3 days, which is gotten by converting that of the chaotic component according to its proportion in the load records.
Keywords:load forecasting  load forecasting time  double period  chaos  Lyapunov exponent
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号