首页 | 本学科首页   官方微博 | 高级检索  
     


Negation-Limited Complexity of Parity and Inverters
Authors:Kazuo Iwama  Hiroki Morizumi  Jun Tarui
Affiliation:(1) Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan;(2) Department of Information and Communication Engineering, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
Abstract:In negation-limited complexity, one considers circuits with a limited number of NOT gates, being motivated by the gap in our understanding of monotone versus general circuit complexity, and hoping to better understand the power of NOT gates. We give improved lower bounds for the size (the number of AND/OR/NOT) of negation-limited circuits computing Parity and for the size of negation-limited inverters. An inverter is a circuit with inputs x 1,…,x n and outputs ¬ x 1,…,¬ x n . We show that: (a) for n=2 r ?1, circuits computing Parity with r?1 NOT gates have size at least 6n?log?2(n+1)?O(1), and (b) for n=2 r ?1, inverters with r NOT gates have size at least 8n?log?2(n+1)?O(1). We derive our bounds above by considering the minimum size of a circuit with at most r NOT gates that computes Parity for sorted inputs x 1???x n . For an arbitrary r, we completely determine the minimum size. It is 2n?r?2 for odd n and 2n?r?1 for even n for ?log?2(n+1)??1≤rn/2, and it is ?3n/2??1 for rn/2. We also determine the minimum size of an inverter for sorted inputs with at most r NOT gates. It is 4n?3r for ?log?2(n+1)?≤rn. In particular, the negation-limited inverter for sorted inputs due to Fischer, which is a core component in all the known constructions of negation-limited inverters, is shown to have the minimum possible size. Our fairly simple lower bound proofs use gate elimination arguments in a somewhat novel way.
Keywords:Circuit complexity  Negation-limited circuit  Parity function  Inverter  Inversion complexity  Gate elimination
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号