首页 | 本学科首页   官方微博 | 高级检索  
     


Data‐driven Handwriting Synthesis in a Conjoined Manner
Authors:Hsin‐I Chen  Tse‐Ju Lin  Xiao‐Feng Jian  I‐Chao Shen  Bing‐Yu Chen
Affiliation:1. National Taiwan University;2. University of British Columbia
Abstract:A person's handwriting appears differently within a typical range of variations, and the shapes of handwriting characters also show complex interaction with their nearby neighbors. This makes automatic synthesis of handwriting characters and paragraphs very challenging. In this paper, we propose a method for synthesizing handwriting texts according to a writer's handwriting style. The synthesis algorithm is composed by two phases. First, we create the multidimensional morphable models for different characters based on one writer's data. Then, we compute the cursive probability to decide whether each pair of neighboring characters are conjoined together or not. By jointly modeling the handwriting style and conjoined property through a novel trajectory optimization, final handwriting words can be synthesized from a set of collected samples. Furthermore, the paragraphs’ layouts are also automatically generated and adjusted according to the writer's style obtained from the same dataset. We demonstrate that our method can successfully synthesize an entire paragraph that mimic a writer's handwriting using his/her collected handwriting samples.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号